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Abstract—The computation of the vertical attraction due to the

topographic masses, the so-called Terrain Correction, is a funda-

mental step in geodetic and geophysical applications: it is required

in high-precision geoid estimation by means of the remove–restore

technique and it is used to isolate the gravitational effect of

anomalous masses in geophysical exploration. The increasing res-

olution of recently developed digital terrain models, the increasing

number of observation points due to extensive use of airborne

gravimetry in geophysical exploration and the increasing accuracy

of gravity data represents nowadays major issues for the terrain

correction computation. Classical methods such as prism or point

masses approximations are indeed too slow while Fourier based

techniques are usually too approximate for the required accuracy.

In this work a new software, called Gravity Terrain Effects (GTE),

developed to guarantee high accuracy and fast computation of

terrain corrections is presented. GTE has been thought expressly

for geophysical applications allowing the computation not only of

the effect of topographic and bathymetric masses but also those due

to sedimentary layers or to the Earth crust-mantle discontinuity (the

so-called Moho). In the present contribution, after recalling the

main classical algorithms for the computation of the terrain cor-

rection we summarize the basic theory of the software and its

practical implementation. Some tests to prove its performances are

also described showing GTE capability to compute high accurate

terrain corrections in a very short time: results obtained for a real

airborne survey with GTE ranges between few hours and few

minutes, according to the GTE profile used, with differences with

respect to both planar and spherical computations (performed by

prism and tesseroid respectively) of the order of 0.02 mGal even

when using fastest profiles.

Key words: Terrain correction, gravity, FFT, airborne

gravimetry.

1. Introduction

The Terrain Correction is the computation of

Newton’s integral, in terms of gravitational potential

or attraction, for the masses distributed in the volume

of the so-called topography, namely those that are

located between the geoid or the Earth ellipsoid,

depending on the height information available, and

the actual topographic surface of the Earth. Such a

computation is of very large use in physical geodesy

where both the potential and the attraction are of

interest (SANSÒ and SIDERIS 2013) and in geophysics

where the main application is the computation of the

so-called Bouguer Anomalies. Beyond the denomi-

nation problem, what is sought is the value of the

corrections to the gravitational potential, dW ¼ Tt or

to its gradient, particularly the vertical component

dg ¼ �m � 5Tt (m being the direction of the vertical in

ellipsoidal geometry), by forward modelling the

effects of topographic masses of known density and

geometry.

The field quantities have to be computed at points

P on the surface or ‘‘in the air’’ when corrections have

to be made e.g. to airborne gravity measurements.

In this paper the focus is on the computation of

the corrections dgt for applications to geophysical

exploration. So we shall concentrate on local areas

(i.e. with a diameter smaller than 100/200 km) where

the so-called planar approximation can be applied,

namely considering m as a field of parallel unit vec-

tors. The situation of the various types of corrections

we will encounter in the paper are represented in

Fig. 1 where the notation is hereafter defined:

– Pot is a computation point on the terrain;

– Pof is a computation point on the flight track;

– qr � 2670 kgm�3, qw � 1030 kgm�3,

qs � 2200 kgm�3 and qm � 3300 kgm�3 are the
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densities of the crystalline crust, oceanic water,

sediments and upper mantle respectively;

– St is the exterior topography surface;

– Sw is the surface of the sea floor;

– SMo is the surface of the Moho;

– ht is the topographic height;

– hw is the bathymetry;

– hMo is the depth of the Moho;

The literature on the subject is very large in both

geodetic and geophysical environments. So we will

limit ourselves to cite a few of them from the

classical paper of MACMILLAN (1930), where the

close formula of the attraction of a prism is given, to

the followers (NAGY 1966; NAGY et al. 2000; BLAIS

and FERLAND 1983; FORSBERG 1984; TSOULIS 1999);

we mention as well several generalizations to differ-

ent bodies particularly polyhedra (TALWANI and

EWING 1960; PAUL 1974; GÖTZE and LAHMEYER

1988; HOLSTEIN and KETTERIDGE 1996; PETROVIC

1996; HANSEN 1999; TSOULIS and PETROVIC 2001);

indeed one has to recall too the approximation of Fast

Fourier Transform (FFT) spectral methods like in the

classical work of Parker (1972) as well as in the ones

of SIDERIS (1984), TSIAVOS et al. (1996) and FORSBERG

(1985). In both the classical approach by prisms as

well as in the Fourier method one has to recall that

the need arises of computing regular integrals (KLOSE

and ILK 1993; TSOULIS and PETROVIC 2001). Along this

line, we want to cite as well methods that combine

Fourier and prism calculation as in (SANSÒ and

SIDERIS 2013), and the TcLight software (BIAGI et al.

2000; SAMPIETRO et al. 2007); this line of thought in

particular is also implemented in the software illus-

trated in this paper.

The GTE software is basically a revision of

classical prisms and FFT methods improved and

combined to maximize the result accuracy minimiz-

ing the computational time. The software is expressly

thought for geophysical applications allowing not

only the computation of the effects of the oceanic and

topographic masses but also those due to sediments

and Moho undulation. Finally, differently from most

of the software available for the computation of ter-

rain correction, GTE can exploit the velocity of FFT

techniques to compute the gravitational effect at any

given altitude, thus allowing for accurate and fast

corrections of airborne data even when acquired close

to the topography.

The organization of the work is as follows: in

Sect. 2 we give some theoretical recalls specially to

justify the planar approximation and, on the same

time, to propose spherical corrections that allow to

enlarge the area of applicability to some degrees. In

Sect. 3 the different algorithms corresponding to

several situations, recalled in Fig. 1, and implemented

in the actual software are illustrated. In Sect. 4 sev-

eral comparisons are displayed with results from our

software and the corresponding results obtained from

two academic software, namely GRAVSOFT (TSCH-

ERNING et al. 1992) and Tesseroids (UIEDA et al.

2011). Finally in Sect. 5 some conclusions are drawn.

2. Some theory

The primary goal of this section is to put clear

limits to the validity of the planar approximation,

providing on the same time the correction terms that

could broaden the area of applicability of GTE,

reminding that the fundamental parameters that drove

the choices while developing the software have been

accuracy and speed.

In this section we review the arguments leading to

the use of a planar approximation for Tt, dgt in a local

area, defined as one which can be inscribed in a cap

of 100 � 200 km diameter, providing an explicit

expression for the largest part of the difference

between terrain correction in spherical and planar

approximations. In this way we have on the one hand

control on the order of magnitude of such errors, on

the other hand formulas that we plan to implement

Figure 1
Basic notation and types of correction managed by GTE
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into our software in the future. Note should be taken

that a different solution to the problem of spherical

approximation has been given in 1990 by STRANG VAN

HEES (1990) and more recently in TcLight (SAMPIETRO

et al. 2007). As mentioned we will start from a

spherical approximation, in particular considering a

local sphere tangent to the earth ellipsoid at P, a

‘‘central’’ point of the area under consideration, with

a radius R equal to the Gaussian radius of the ellip-

soid at P and a center O at distance R from P along

the ellipsoidal normal. The vector rP, with modulus

rp, is then the position vector of P with respect to O,

eP ¼ rP

rp
; moreover we shall use the notation

hP ¼ rP � R, DhPQ (or simply Dh) for Dh ¼ hP � hQ,

eP ¼ hP

R
, lPQ ¼ jrP � rQj, ez for the axis z going along

with mP, wP ¼ dePez , sPQ (or simply s) as the projec-

tion of lPQ on the tangent plane in P to the local

sphere, eOP the unit vector along the projection of rP

on the above tangent plane, aPQ (or simply a) the

angle in the tangent plane deOPeOQ (see Fig. 2).

Considering that the gravitational terrain effect

can amount up to few hundreds of mGal, we shall

consider approximations with terms of a relative

order of 10�3 � 10�4 certainly disregarding terms

below 10�4. We observe that in cases of a very

rugged topography with high mountains, we have at

most nj j, Dj j � 10�3, although it is clear that in such

areas we expect the planar approximation to have a

poorer performance.

We start from the well known identity (SANSÒ and

SIDERIS 2013)

l2
PQ ¼ r2

P þ r2
Q � 2rPrQeP � eQ

¼ ðrP � rQÞ2 þ 2rPrQð1 � eP � eQÞ
ð1Þ

Considering Fig. 2, we see that eP ¼ sinwPeOP þ
coswPez so that eP � eQ ¼ sinwPsinwQcosaþ
coswPcoswQ. In our local area we can substitute

sinw ffi w and cosw ffi 1 � 1
2
w2 because at w ¼ 1� we

have, in radiants w ffi 1:7 � 10�2, w2 ffi 3:10 � 10�4,

w3 ffi 5:30 � 10�6, w4 ffi 9:30 � 10�8. As we see

even the terms in 1
2
w2 could be neglected with a

relative error of 1:5 � 10�4, which is about our lower

acceptance limit. So we can write:

2rPrQð1 � eP � eQÞ

ffi 2ð1 þ ePÞð1 þ eQÞR2ð1
2
w2

P þ 1

2
w2

Q � wPwQcosaÞ

ffi ð1 þ eP þ eQÞðs2
P þ s2

Q � 2sPsQcosaÞ
¼ ð1 þ eP þ eQÞs2

PQ ð2Þ

where we have put sP ¼ RsinwP ffi RwP,

sQ ¼ RsinwQ ¼ RwQ. If we call ePQ ¼ eP þ eQ and

LPQ ¼ Dh2 þ s2
PQ

h i1
2

, using Eqs. 1 and 2 we get:

1

lPQ

¼ Dh2 þ s2
PQ þ ePQs2

PQ

h i�1
2

ffi 1

LPQ

� 1

2
ePQ

s2
PQ

L3
PQ

:

ð3Þ

We note that LPQ by definition is just the Cartesian

distance between two points which are mapped from

P and Q, when hP, hQ is taken as a z component,

while sPeOP, sQeOQ are (almost) their projection on

the tangent plane. The mapping is illustrated in

Fig. 3.

Now letting G be the Newton constant, and q the

density of the body B, also assumed to be constant,

and putting l ¼ Gq we have, considering that

drQ ¼ dhQ,

Figure 2
Geometry of the local sphere and of the tangent plane

Figure 3
The mapping of the topographic body B to the flattened B’
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Tt ¼ l
Z

dr

Z

r2
Q

dhQ

lPQ

dr; ð4Þ

with dr the differential solid angle. To proceed we

need to analyse the area element

r2
Qdr ¼ ð1 þ eQÞ2

R2dr ffi ð1 þ 2eQÞR2dr: ð5Þ

On the other hand it is, for the area element d2x on the

tangent plane, d2x ¼ R2drcosw ffi R2dr� 1
2
w2R2dr,

which can be reversed to:

R2dr ffi d2x þ 1

2

s2

R2
d2x: ð6Þ

Using Eqs. (6) and (3) into Eq. (4) and retaining only

terms in e or w2 we get:

TtðPÞ ffi l
Z

d2x

Z HQ

0

dhQð1 þ 2eQ þ
s2

Q

2R2
Þð 1

LPQ

� ePQ

2

s2
PQ

L3
PQ

Þ

ffi l
Z

d2x

Z HQ

0

dhQ

LPQ

þ l
Z

d2x

Z HQ

0

dhQð2
eQ

LPQ

þ
s2

Q

2R2

1

LPQ

� ePQ

2

s2
PQ

L3
PQ

Þ

¼ TP
t ðPÞ þ Tsc

t ðPÞ:
ð7Þ

With TP
t we denote the planar approximation to Tt

and TSC
t its spherical correction term.

To pass over to the gravity effect we can split our

calculation between planar and spherical correction

terms. As for the former, namely the planar terrain

correction, we have:

dgP
t ðPÞ ¼ � o

ohp

l
Z

d2x

Z HQ

0

dhQ

LPQ

¼ l
Z

d2x

(

1

LPQ

� 1

LPQO

)

ð8Þ

In Eq. (8), referring to the notation of Fig. 4,

LPQ ¼ ðhP � HQÞ2 þ jnP � nQj2
h i1

2 ð9Þ

and

LPQO ¼ h2
P þ jnP � nQj2

h i1
2

: ð10Þ

Notice that the planar integral in Eq. (8) has to be

extended to the actual base D of the topographic

body. As for the spherical corrections, the following

approximate expressions hold

dgsc
t ðPÞ ¼ 2l

Z

d2x

Z HQ

0

dhQeQ

o

ohQ

1

LPQ

þ l
Z

d2x
s2

Q

2R2

Z HQ

0

dhQ

o

ohQ

1

LPQ

� l
2R

Z

d2x

Z HQ

0

s2
Q

L3
PQ

dhQ

� l
2

Z

d2x

Z HQ

0

s2
PQePQ

o

ohQ

1

L3
PQ

dhQ

	 I1 þ I2 � I3 � I4 ð11Þ

with

I1 ¼ 2l
Z

d2x
HQ

R

1

LPQ

� 2l
R

Z

d2x

Z HQ

0

dhQ

1

LPQ

ffi 2l
Z

d2x
HQ

R

 

1

LPQ

� 1

LPQ0

!

; ð12Þ

I2 ¼ l
Z

d2x
s2

Q

R2

 

1

LPQ

� 1

LPQ0

!

; ð13Þ

I3 ¼ l
2R

Z

d2x

Z HQ

0

s2
PQ

L3
PQ

dhQ

ffi l
2

Z

d2x
HQ

R

s2
PQ

L3
PQ0

;

ð14Þ

Figure 4
Notation of points and distances in the flattened body geometry
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I4 ¼ l
2

Z

d2xs2
PQ

 

hP

R
þ HQ

R

!

1

L3
PQ

� l
2

Z

d2xs2
PQ

hP

R

1

L3
PQ0

� l
2R

Z

d2x

Z HQ

0

s2
PQ

L3
PQ

dhQ ffi l
2

Z

d2xs2
PQ

hP

R

 

1

L3
PQ

� 1

L3
PQ0

!

þ l
2

Z

d2xs2
PQ

HQ

R

 

1

LPQ

� 1

LPQ0

!

:

ð15Þ

For the above expressions taking into account that
sPQ

LPQ

 1, we find roughly the following estimates

OðI1Þ� 2 � 10�3dgP
t ð16Þ

OðI2Þ� 3 � 10�4dgP
t ð17Þ

OðI3Þ�
1

2
� 10�3dgP

t
ð18Þ

OðI4Þ� 10�3dgP
t : ð19Þ

The above orders of magnitude are computed

under rather extreme conditions, like eP; eQ � 10�3;

ðsQ

R
Þ2 � 3 � 10�4; etc; indeed restricting the area e.g.

to a 100 km diameter I2 becomes irrelevant and the

other are reduced considering that R can be brought

to a mean height and it is only in particular areas that

one can have 6 km of height difference in 100 km

horizontal distance.

In the GTE software just the planar approximation

has been fully developed. As for the spherical part,

only a prototype version, which numerically com-

putes the correction, has been implemented. This

prototype, which is not optimized, is here used to

assess the order of magnitude of the correction itself.

For this reason from now on we will consider that the

topographic body is described in terms of Cartesian

coordinates and its attraction is given by Eq. (8).

3. The GTE algorithms

The hypotheses we do now to compute formula in

Eq. (8) are basically that the density is constant

across the whole body and that the body itself is

constituted by prisms. This means that we have a

regular grid on the (x, y) plane, with cells of size Dx,

Dy; this is typical when we give the terrain in the

form of a digital terrain model (DTM), the centers of

the cells are thought as sampling points of the digital

terrain, while throughout the cell the terrain has a

constant height. Similar is the situation when we have

to do with bathymetry, the difference with the above

being that now h ¼ �H\0, while for topography we

have h ¼ H � 0. For a body not totally below the

(x, y) plane, like in the case of sediments, one can

decompose the calculation between the upper surface

of the body and the lower surface.

Considering also that the density in Eq. (8) is

included in l ¼ Gq, namely a multiplicative con-

stant, it is clear that the algorithm is basically only

one, adapted to different circumstances. So we shall

concentrate on the topographic case, leaving to a few

remarks the application to other cases. Since the

formula for the attraction of a single prism is

explicitly known and can be split into a contribution

dgþ
t of the upper face and a contribution dg�

t of the

lower face, in principle we can compute as well

exactly dgt at any point P outside the body by sum-

ming up the effects of each prism:

dgtðPÞ ¼
X

ðj;kÞ
dgþ

jkðPÞ � dg�
jkðPÞ

h i

ð20Þ

with j; kð Þ grid indexes. We do not report here the

expressions of dg�
jkðPÞ that depend indeed from the

shape of the prism and the relative position of P with

respect to the center of the face þ or �, but we send

the reader to the mentioned literature (MACMILLAN

1930; NAGY 1966). This approach is classical and

implemented in many algorithms and provides an

‘‘exact’’ solution, given our planar hypotheses. GTE

implements the algorithm too, specially to compute

dgt at sparse points. However when the number of the

grid points goes up to 106 and the number of com-

putation points is of the same order of magnitude, due

to the necessity of computing several times logarithms

and arctangents, the approach can become very time

consuming and therefore not efficient. The remark

that the bases of the prisms can be conglomerated, to

perform one computation only (TSOULIS 1999),

therefore dividing by a factor two the computational

time, is helping but does not solve the problem. A

breakthrough to the solution of the problem has come

from the idea of applying a FFT approach (SIDERIS

1984). However the numerical advantage of a Fourier

approach is very large in terms of velocity when we

have to compute convolutions and when the

Vol. 173, (2016) GTE: a new software for gravitational terrain effect computation 2439



discretized form is referring to grids with size equal to

a power of 2 (or using a mixed radix algorithm to a

power of 2 by a power of 3 etc.). This requirement is

usually satisfied by extending the DTM grid with zero

height nodes, the so-called zero padding. More refined

solutions can be given to avoid jumps on the edges

(SANSÒ and SIDERIS 2013). Furthermore the fast ver-

sion of the discrete Fourier Transform, implies the

result to be computed on the same grid on which data

are given. For this reason the main algorithm of GTE

is computing terrain corrections on grids.

We distinguish two case:

1. When dgt has to be computed on a grid on the

DTM itself

2. When dgt has to be computed on a grid at constant

height, hP 	 H.

1. GTE on a grid in the DTM itself. Let us first

workout Eq. (8) to obtain convolution integrals; in

particular we shall concentrate on the top part,

because the lower part can be computed exactly as

the lower part of a prism. To simplify the writing let

us agree that n is the position vector of P0 in the (x, y)

plane while g is the position vector of the running

point Q0. Note also that hp ¼ HP 	 Hn, when P is on

the DTM, so that dgt can be considered as function of

the 2D vector n. Then we have

1

LPQ

¼ 1

½jn� gj2 þ ðHn � HgÞ2
1
2

ffi 1

jn� gj �
1

2

ðHn � HgÞ2

jn� gj3
þ 3

8

ðHn � HgÞ4

jn� gj5
þ � � �

ð21Þ

Indeed the series, that we have stopped to the fourth

order term, is convergent if the condition

jHn � Hgj
jn� gj \1 ð22Þ

is everywhere satisfied on the DTM. This means that

the maximum inclination of the DTM should be less

than 45�. It is interesting that, integrating Eq. (21) ,

we see that

dgþ
t ðnÞ ¼ l

Z

d2g
jn� gj �

l
2

Z ðHn � HgÞ2

jn� gj3
d2g

þ 3

8
l
Z ðHn � HgÞ4

jn� gj5
d2gþ � � �

ð23Þ

where each integral is in fact converging thanks to

Eq. (22). However none of the above integrals is a

convolution while, taking as an example the second

order term, we could write

l
2

Z

D

ðHn � HgÞ2

jn� gj3
d2g ¼ l

2
H2

n

Z

D

d2g

jn� gj3
� lHn

Z

D

Hg

jn� gj3
d2g

þ l
2

Z

D

H2
g

jn� gj2
d2g

ð24Þ

where each of the integrals of the right hand side has

the form of a convolution. Unfortunately none of

them is any more convergent. The problem has been

overlooked by saying that in the left hand side of

Eq. (24) we can isolate a small area around n because

we take Hn 	 Hg when n, g belong to the same cell.

In our software on the contrary we prefer to adopt a

different strategy similar to that proposed in TcLight

(BIAGI et al. 2000): we define a ‘‘small’’ area (e.g. up

to few kilometres) in the plane around 0 as Deð0Þ; in

our case, with the subsequent discretization in mind,

we use a Deð0Þ as in Fig. 5.

This is formally defined by the characteristic

function:

IeðgÞ ¼ veðjg1jÞveðjg2jÞ ð25Þ

with

veðjtjÞ ¼
1 for jtj 
 e

0 elsewhere:

�

ð26Þ

Note that Deð0Þ can be translated around any point n
in the plane generating the set

Figure 5
The set used to isolate the singularity
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DeðnÞ ¼ nþ Deð0Þ ð27Þ

with characteristic function

Ieðn� gÞ ¼
1 for n� g 2 Deð0Þ
0 elsewhere:

�

ð28Þ

This would allow, for each computation point P,

splitting the integration domain into two parts,

namely an inner and an outer region. According to

the above definition the inner domain is composed

of the DTM cells included into a square, centred in

P, with side 2eþ 1. For instance if e is equal to 1

the inner part is defined by the 9 DTM cells closest

to P (similarly to Fig. 5), if e is equal to 2 the inner

part is made of 25 DTM cells, etc. Then we can

write:

dgþ
t ðPÞ ¼ l

Z

DnDeðnÞ

d2g
LPQ

þ l
Z

DeðnÞ

d2g
LPQ

	 dgþ
ouðPÞ þ dginþðPÞ:

ð29Þ

The integral dgþ
inðPÞ is easily computed by dis-

cretization in prisms (in fact only the upper faces

contributions); in this way for each grid node and the

corresponding prism we don’t have to compute a full

grid of values, but only ð2eþ 1Þ2
values, thus

reducing considerably the number of computations

and, as a consequence, the computational time. On

the other hand the term dgþ
ouðPÞ in Eq. (29) can be

written as:

dgþ
ouðPÞ ¼ l

Z

D

½1 � Ieðn� gÞ
LPQ

d2g ð30Þ

and for this integral we can follow the approach of

series development seen in Eq. (21). One has to

remark however that now the ratio of Eq. (22) has to

be computed for points n, g distant at least eþ 1 from

one other, if we fix for simplicity Dx ¼ Dy ¼ 1. So

the condition Eq. (22) is much more easily satisfied,

specially choosing judiciously e as function of the

terrain roughness. Also, the number of terms neces-

sary in Eq. (21) to obtain a good approximation,

decreases. Furthermore, referring for instance to the

second order terms as in Eq. (24), one has:

dgþ
ou;2ðPÞ ¼

l
2

Z

DnDeðnÞ

ðHn � HgÞ2

jn� gj3
d2g

¼ l
2

H2
n

Z

D

½1 � Ieðn� gÞ
jn� gj3

d2g

� lHn

Z

D

Hg½1 � Ieðn� gÞ
jn� gj3

d2g

þ l
2

Z

D

H2
g ½1 � Ieðn� gÞ

jn� gj3
d2g:

ð31Þ

As we see all the integrals in Eq. 31 are now con-

volution integrals and none of them is anymore

singular.

A little thought shows that, by using the kernels:

Kkðn� gÞ ¼ 1 � Ieðn� gÞ
jn� gj2kþ1 ð32Þ

referring to Eq. 23 and collecting all the terms up to

the maximum power 2N, one is reduced to compute

an expression like:

dgþ
ouðPÞ ¼

X
N

k¼0

X
2k

j¼0

CkjH
2k�1
n Kk � H j

g

n o

ð33Þ

with Ckj known constants.

Indeed the key point in Eq. 33 is that the convo-

lution can be computed by the Fourier formula:

Kk � H j
g ¼ F�1 FfKkg � FfH j

gg
n o

ð34Þ

which can be performed by discretization and appli-

cation of FFT algorithm. In the GTE software the two

numbers e and N (taken both as integers) can be

chosen by the user.

2. GTE on a grid at constant height H. We assume

that the plane h ¼ H is totally above the topography.

Therefore we can write

1

LPQ

¼ 1

s2 þ H
2 � 2HHg þ H2

g

h i1
2

¼ 1

s2 þ H
2

h i1
2

� 1

1 � 2 H

s2þH
2 Hg þ 1

s2þH
2 H2

g

h i1
2

ð35Þ
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If we call

LO ¼ LPOQO
¼ s2 þ H

2
h i1

2

; ð36Þ

Eq. 35 can be expanded in (always convergent)

power series in Hg, namely:

1

LPQ

¼ 1

LO

þ H

L3
O

Hg þ 3H
2 � L2

O

2L5
O

H2
g þ Hð5H

2 � 3L2
OÞ

2L7
O

H3
g þ � � �

ð37Þ

As we see by integrating 1
L2kþ1

PQ

over D several terms

are generated each of which can be put in the form:

ðj� 2kÞ
Z

D

 

H

L0

!ð2kþ1Þ 
Hg

H

! j

d2g ¼ FkjðnÞ:

ð38Þ

Indeed such terms are easily computed by Fourier,

using the convolution theorem. Note has to be taken

that both terms under the integral in Eq. 38 are

smaller than or equal to 1 and in particular ðH
L0
Þ2kþ1

, as

a bounded function that can be put to zero when s ¼
jn� gj is larger than the diameter of D, has always a

regular Fourier transform.

So in Eqs. 37 and 38 the singularity problem is

overcome; yet when H is only a small distance above

the top of the topography (see Fig. 6) there are values

of H
LO

and
Hg

H
that in some areas can be very close to 1

strongly degrading the effectiveness of the approxi-

mation by series development in Eq. 37. To

counteract such an effect we have implemented in

GTE a particular algorithm, that we called slicing,

schematically represented in Fig. 6.

The idea is that the terrain correction of the

topographic body is computed at height H slice by

slice and then added. In doing so the reference plane

is brought up at the base of the slice in such a way

that the ratio of the height of the slice and the height

of the computation grid is never close to 1. To

explain, in Fig. 6, the middle slice has a ratio H2�H1

H�H1

which is smaller than 1
2
. Then when we move to the

upper slice we still have
Htop�H2

H�H2
smaller than 1

2
.

The number of slices can be fixed by the user, as

for the height it can be either chosen by the user or

taken automatically by the software. In this second

case the first height is fixed at H1 ¼ 0:4H, then H2 ¼
0:4ðH � H1Þ and so farther. Note that in the case of

the computation of a grid close to the surface of the

DTM the parameter e can be different for each slicing

thus improving the convergence and optimizing the

computational time. To better explain how these

values affect the calculation, a small sensitivity test

will be presented in the practical applications section.

Remark 1 GTE for sparse points.

There are cases in which terrain effects have to be

computed at sparse points, but, given the dimension

of the problem, we still want to take advantage of

some Fourier algorithm. We still distinguish the two

cases, when the computation points are on DTM or

they are in space. For the first case GTE computes a

simple bi-linear interpolation to each computation

point, from the values at the four corners of the cell to

which P belongs. If on the contrary the sparse com-

putation points Pkf g are above the topography, but

indeed not all at the same height, the software com-

putes two grids in correpsondence of the minimum

(Hmin) and the maximum (Hmax) heights of Pkf g.

Then let P, the computation point, be as in Fig. 7.

We take the cover cell and interpolate the terrain

effect from Gþ
i and G�

i to Pþ and P� respectively.

Such horizontal interpolations are performed by bi-

linear functions. Finally we interpolate linearly from

P�, Pþ to P. Several experiments have shown that

instead of computing more grids and using a higher

order polynomial in vertical direction, it is always

preferable to split the sparse points in several subsets

according to their altitude, compute a couple of grid

for each subset, and then to go linearly. The same

tests have also shown that, in case of airborne
Figure 6

Slicing the topographic body to compute the grid at height H

2442 D. Sampietro et al. Pure Appl. Geophys.



acquisitions, keeping the height difference of one

subset smaller than 500 m will in general maintain

the error smaller than 0.1 mGal.

Remark 2 GTE for bathymetry.

We repeat Fig. 1 with only rock and water in Fig. 8.

Let us recall that our purpose is to compute the

gravimetric effect of the body Bt [ Bw. Indeed we

have already a software capable of computing the

gravity effect of Bt; we want to show how to use the

same software to compute the gravity effect of Bw.

Let us use the notation dgðqjBÞ = gravity effect of a

generic density q distributed in the generic body B.

We have:

dgðqwjBwÞ ¼ dgðqwjBOÞ � dgðqwjBrÞ: ð39Þ

Here B0 is a big prism the upper and the lower faces

of which lay on the planes h ¼ 0 and h ¼ �H0, i.e.

B0 ¼ Br [ Bw. The first term on the R.H.S. is just the

effect of the prism B0 that the software handles

easily. The second term in Eq. 39, namely dgðqwjBrÞ
is just the effect of the body Br, with a suitably

reduced density, computed at a grid on the plane at

height H ¼ HO þ H above the base of Br. This is

exactly what our software already does if we just

change the values of l to Gqw and the height from H

to HO þ H. Note that if we want to make Bt [ Br [
Bw uniform, because then its effect is that of a Bou-

guer plate (or better prism), once we removed

dgðqrjBtÞ we simply have to compute dgðqwjBwÞ with

Eq. 39 but substituting qw with qr � qw.

It is worth noticing that with the same method but

just changing the density q in the multiplicative

constant l one could also take into account that the

density below the sea floor is that of a sediment rather

than that of rock. So the problem of bathymetry is

solved.

Remark 3 GTE for Moho and sediments.

To handle the Moho effects we can use exactly the

same reordering that we did for bathymetry, by

suitably changing density constant. Only since the

Moho is deeper and generally smoother than sea

floor, depending on the resolution of the model

available, the user can apply the simple prism algo-

rithm implemented in GTE (in case of low

resolution), or the FFT routine without slicing and

with a small e (e.g. e ¼ 3). Similar is the situation

with sediments, where the algorithm will have to be

applied once for the lower surface and once for the

upper surface of the sediments.

Remark 4 GTE for gravity gradiometry.

A part for classical airborne gravity surveys, nowa-

days also airborne gravity gradiometer systems used

for geophysical exploration are becoming more and

more important. Even if GTE has not been developed

explicitly for gravity gradients, it allows to numeri-

cally compute at least the second derivative of the

gravitational field in the vertical direction. In fact this

component is already computed and used when

interpolating from the two grids to the sparse points.

A simple numerically test showed that for a complex

DTM (such the one depicted in Fig. 9), GTE is able

to compute the second vertical derivative of the

potential with an accuracy of about 5 E in less than

60 s.

Concluding this long section let us recall here that

all the choices done in designing the software have

been driven by numerical tests, with the purpose of

Figure 7
Spatial interpolation at P

Figure 8
The geometry of the body composed by Bt (topographic body), Br

(basement with rock density), Bw (basin filled with water); HO

maximum depth of Bw, H height of the grid where we want to

compute dg
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guaranteeing an accuracy in the computation of dg at

the level of 10�2 mGal, always assuring a fast com-

putation. In any case, since the final accuracy of the

terrain correction largely depends on the specific

geometry of the problem (i.e. on the specific digital

terrain model and on the distance between topogra-

phy and the observation points), all the parameters of

the GTE software, like the number of slicing sections

as well as the e parameter or even the number of

convolutions can be set by the final user. However, to

facilitate the use of the software some profiles have

been a priori set. In Table 1 we report the main

characteristics of each profile implemented for the

computation of the gravitational effect of topography

and bathymetry.

4. GTE performances

To evaluate the performances of the GTE soft-

ware some numerical tests have been performed. The

tests will be mainly focused on the computation of

the terrain correction for airborne gravimetry (the

algorithm presented in Sect. 3, case 2) which

represents the most important feature of the GTE

software. In particular the aim of these tests is to

compare the accuracy and the computational time of

GTE algorithms and software with respect to those

implemented in standard scientific software such as

the GRAVSOFT package (TSCHERNING et al. 1992) or

the Tesseroids one (UIEDA et al. 2011). GRAVSOFT

is a suite of Fortran programs developed to model the

gravitational signal. The package is widely used for

scientific and production purposes. For instance it has

been used for geoid determination of the Nordic Area

(TSCHERNING and FORSBERG 1987; FORSBERG et al.

1997), parts of UK (DODSON and GERRARD 1990), Italy

(BENCIOLINI et al. 1984), Catalonia (ANDREU and SIMO

1992), the Mediterranean Area (ARABELOS and TZI-

AVOS 1996), Turkey (AYHAN 1993) and in numerous

smaller projects for local detailed geoid determina-

tion. Among the difference functionalities of the

GRAVSOFT package here we will concentrate on the

TC software only. Just note that the TCFOUR soft-

ware, as many FFT based algorithms, permits to

compute only the gravitational effect of topographic

masses on the surface defined by the DTM itself (as

in the first case presented in Sect. 3) it is therefore not

suitable for airborne gravity surveying but can be

used for ground as well as shipborne surveys. The TC

software is more flexible allowing the computation of

the gravitational effect of a DTM at any point in the

space (outside the masses). to improve its speed, TC

can consider two grids (one at high and one at low

resolution), for cells close to the point were the ter-

rain effect should be computed the high-resolution

model is used, while for distant cells the low reso-

lution one is considered. The threshold can be set by

the user. Moreover, to compute the effect of a single

cell of the DTM the user can choose between dif-

ferent solutions: one can use the prism equation

(NAGY 1966) or approximate its solution with

MacMaillian’s formula (MACMILLAN 1930) or even

with the effect of a point mass. The approximation

used is automatically chosen by the software as a

function of the geometry of each specific computa-

tion. Note that, in GRAVSOFT, the masses of each

prism (or point) is computed according to its latitude

thus approximating, even if in a quite rough way, one

of the most important effect of the Earth sphericity.

Furthermore in GRAVSOFT also a method to deal

Figure 9
Digital terrain model used for the first test
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with inconsistencies between ground stations and the

DTM is implemented. Actually the user can choose if

modifying smoothly the terrain model in an inner-

zone to give the correct elevation at the computation

point, or to move the stations on the DTM itself, or to

leave the station free above the DTM.

Actually, TC can calculate prisms close to the

station, an interpolation method in between and FFT

far outside. Furthermore it has also methods to deal

with inconsistencies between the stations and the

DTM (station in masses e.g.). I would discuss that

options more in detail and cut the general description

of GRAVSOFT

As for Tesseroids, it is a collection of command-

line C programs to model the gravitational potential,

acceleration, and gradient tensor of topographic

masses. Tesseroids supports models and computation

grids in Cartesian and spherical coordinates. The

main geometric element used in the modelling pro-

cess is a spherical prism, also called a tesseroid, the

gravitational effect of which can be computed by

means of approximated formula (ASGHARZADEH et al.

2007). The software basically computes the gravita-

tional effect of each tesseroid by summing up the

effect of a number of point masses optimally dis-

tributed and weighted inside the tesseroid. Indeed, the

accuracy of the solution remains essentially unchan-

ged for different numbers of point masses as long as

the node spacing is smaller that the distance to the

observation point (ASGHARZADEH et al. 2007), there-

fore in using the software particular attention has

been paid to respect this simple law. Some new

developments (SZWILLUS et al. 2012), based on

adaptive changing the topography resolution with

Tesseroids, need to be mentioned here, since they can

probably considerably reduce the computational time.

Tesseroids is mainly used for geophysical studies at

different scales from the very local one, such as the

reconstruction and analysis of the Grotta Gigante

cave signal (a Karstic cave in the Northern part of

Italy PIVETTA and BRAITENBERG 2015), to the regional

ones such as the study of the crustal structure in the

Andean region (ALVAREZ et al. 2014) or the study of

the European Alps orogenetic belt (BRAITENBERG

et al. 2013). All the tests have been performed on a

single node of a supercomputer equipped with two

8-cores Intel Haswell 2.40 GHz processors (for a total

of 16 cores) with 128 GB RAM.

Before presenting the numerical tests, it should be

observed that, since we are supposing to be in planar

approximation, the solution obtained by means of the

pure prism equation (i.e. the GTE VERYSLOW

solution) represents the exact solution of the problem

and can be used for comparisons. Another comment

is required at this step: there is still, in fact, one

problem that should be faced to correctly evaluate the

final accuracy of the terrain correction here presented.

In general, the actual terrain, that should be consid-

ered to properly reduce gravity observations, cannot

being exactly represented by flat topped prisms like

in the examples here reported. In literature this

problem is usually solved by interpolating the terrain

close to the observation point, i.e. for distances

smaller than 100 m according to the standards

defined by Hinze et al. (HINZE et al. 2005), and

computing its effect for instance by means of poly-

hedral approximation. Here this effect, which is in

general relevant only when dealing with ground

Table 1

Number of slices and number of prisms used for each slice to reduce the FFT singularity for different profiles

Profile name Topography Bathymetry

Slices e Slices e

VERYOFF 0 3 0 3

FAST 1 5–10 1 5–10

TRADEOFF 2 5–15–30 2 5–10–20

SLOW Prisms – 2 5–10–20

VERYSLOW Prisms – Prisms –

Parameters are reported in case of computation of topographic and bathymetric effects
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observations as will be shown later on, is evaluated

by bi-linearly interpolating the digital elevation

model close to the observation point (i.e. for hori-

zontal distances smaller than 300 m) to a resolution

of 10 � 10 cm and computing its effect by means of

prisms. Note that this finer description well approxi-

mates the polyhedral solution. The difference

between the gravitational effect of the flat topped

prisms and this finer description, called in the fol-

lowing flat prism approximation, will be reported for

each experiment.

The first dataset used for the testing purpose is

located in the south part of New Mexico, between

31:5� and 35 S and 105� and 108� W. The digital

elevation model is a grid with 351 rows and 301

columns with a spatial resolution of 36 arcsecond. It

is a mountainous region characterized by a mean

elevation of 1670 m with a minimum of 1050 m and

a maximum of 3445 m (Fig. 9).

The first test performed consists in comparing, in

terms of accuracy and computational time, the results

computed on a regular grid (the same grid defined by

the DTM) at 3500 m obtained by the different GTE

profiles as well as by different software solutions.

Note that since the test area is completely onshore

both profiles SLOW and VERYSLOW are computing

the gravitational effect by using the prism equation

only.

The altitude of the grid has been chosen to be sure

to compute the gravitational effect of the topography

always outside the masses, therefore as already said it

has been fixed at 3500 m, only 55 m above the

highest peak. Results of this first test are presented in

Fig. 10 and summarized in Table 2, where the com-

putational time required for each computation and

some statistics on the differences between each

solution and the SLOW profile (used as a reference)

are reported.

Starting from the comparison between the SLOW

profile and the GRAVSOFT software (with the

standard compilation) it can be seen that the com-

putational time required by GTE (144 s) is less than a

third of those required by GRAVSOFT (about 511 s).

This is due to the fact that some of the GTE routines

have been parallelized, thus exploiting the maximum

computational power of the machine. Supposing to

run GRAVSOFT in a parallel way, its computational

time could be in principle reduced up to a factor 16 to

about 30 s, which is comparable to the FAST GTE

solution. This is due to the approximations introduced

by GRAVSOFT in the computation of the single

prism effect. However the difference between the two

solutions shows a mean value of �6:95 mGal and a

standard deviation of 2.41 mGal; removing a border

of about 40 km where border effects of the FFT

(SANSÒ and SIDERIS 2013) can have some importance

the standard deviation drops to 0.7 mGal while the

average remains practically unchanged. To improve

the mean value of the GRAVSOFT terrain correction

one has to force the software to use only the high-

resolution grid and compute the effect by means of

prism equation. In this case the difference on the

average reduces to �4 mGal but the computational

time required to reach the GRAVSOFT solution

considerably increases to more than 6 h. This

�4 mGal difference between the averages of the

GTE and GRAVSOFT solutions can be explained by

the different algorithms used from the two software to

map geodetic coordinates in Cartesian ones: in fact,

while GTE uses the mapping presented in Sect. 2,

GRAVSOFT defines its Cartesian reference system

simply as x ¼ 111195Dk cosu and y ¼ 111195Du,

with Dk and Du the DTM resolution in longitude and

latitude respectively (in radians) and u the average

latitude of the DTM itself. As for the Tesseroids

results it can be seen that they are closer than

GRAVSOFT to those of GTE with an average dif-

ference of about 2 mGal and a standard deviation of

0.29 mGal which drops to only 0.17 mGal if the

border region is removed from the statistics. It should

be observed that the Tesseroids computation is per-

formed directly in spherical approximation, this is the

main cause of the 2 mGal difference (as can be

observed by Fig. 10). This is also confirmed by the

fact that if the spherical correction of Eq. 11 is

applied to the GTE result the difference between

Tesseroids and GTE drops down to less than

0.5 mGal (0.03 mGal mean value, 0.05 mGal stan-

dard deviation, �0:3 mGal as minimum and

cFigure 10
TC compute with the SLOW profile and its differences with respect

to the gravitational efect computeb by means of different

profiles/software
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maximum, see Fig. 11). As for the computational

time, even for such a small example it takes more

than 8 hours to compute the Tesseroids solution

which is two orders of magnitude more than the

slowest GTE computational time. Again, supposing

to run it in a parallel way on 16 cores, the compu-

tational time can theoretically be reduced up to about

2000 s which is however an order of magnitude more

than the slowest GTE solution.

Considering the other GTE profiles, namely the

VERYFAST, FAST and TRADEOFF, it can be

observed that the use of FFT speeds up the compu-

tation of a factor ranging between 2 and 10 giving

practically the same result (standard deviation of the

Table 2

Statistics and computational time on a grid at 3500 m for the different profiles and software tested

Profile name Time (s) Mean (mGal) Std (mGal) Max (mGal) Min (mGal)

SLOW 144.0 176.53 40.4 349 32

VERYFAST 11.9 �0.37 0.09 -0.071 -0.62

FAST 29.4 -0.14 0.02 -0.032 -0.15

TRADEOFF 83.3 �0.13 0.01 -0.030 -0.15

GRAVSOFT 511.1 �6.95 2.41 22.5 -59.7

Tesseroids 3:1 � 104 2.01 0.29 2.53 0.85

Flat prism approx. – 1 � 10�4 7:8 � 10�3 0.037 -0.052

SLOW profile shows statistics on the computed signal. For the other rows the statistics are referred to the difference between each result and

the terrain effect computed with the SLOW profile

Figure 11
Spherical correction compute by means of numerical integration of Eq. 11 and difference between GTE with spherical correction and

Tesseroids
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differences always smaller than 0.1 mGal). The

major improvement from the VERYFAST to the

FAST profile is basically due to the combine effect of

the slicing algorithm and of the increase of the e
paramenter. Actually, changing the value of e from 1

to 20 considerably reduces the average difference

with respect to the SLOW solution from 0.69 mGal

to 0.004 mGal while the computational time is

increased from about 6 to 25 s. Also the maximum of

the difference decreases from about 2 mGal to just

0.006 mGal. On the contrary, the impact of the slic-

ing on the accuracy is smaller: increasing the number

of slices from 1 to 6 does improve only of 0.01 mGal

the standard deviation of the result (leaving all the

other statistics unchanged). However the slicing tool

allows, as stated above, to increase e only where it is

required (e.g. on the top of mountainous area), thus

optimizing the computation. In fact when dealing

with the highest slices large portions of the area is

generally empty (see for instance Fig. 6), therefore,

even for large e, only few prisms are computed.

Finally coming to the flat prism approximation (here

evaluated only on 10 % of the whole dataset), it can

be seen that in this case it can be disregarded being in

general smaller than 0.05 mGal.

The same dataset has been used also to test GTE

performances for the computation of the terrain effect

directly on a grid on the surface of the DTM itself

(i.e. the algorithm explained in Section 3.2). In that

case Tesseroids cannot be used since its solution

became unstable when the observation point is close

to the masses. GTE computes the solution in 9.8 s

with differences with respect to the pure prism

solutions smaller than 1�3 mGal while GRAVSOFT

takes more than 580 s giving differences of few mGal

(�6:17 mGal average and 2.72 standard devia-

tion).As expected, in this case the difference between

the flat topped prism and the polyhedral approxima-

tion, become significant having a standard deviation

of about 1.5 mGal.

The second experiment performed consists in

computing the gravitational effect using the same

digital elevation model on a set of 1000 sparse points

with a variable altitude set at 150 m above the DTM

(results are reported in Table 3).

Comparisons between GRAVSOFT, Tesseroids

and the SLOW profile are practically unchanged, it

should only be observed that the computational time

required by GTE does not depend on the number of

sparse points since once the two grids are computed it

is just a matter of linear interpolations, while in the

case of GRAVSOFT and Tesseroid doubling the

number of points corresponds to doubling the com-

putational time (note that classical airborne

gravimetry surveys can reach more than 106 points,

i.e. 1000 times the number of points used in this

experiment). As for the others profiles they basically

show the same statistics which are however degra-

dated (the standard deviation increases from less than

0.1 mGal to about 0.9mGal) due to the closeness of

the points to the DTM and to the use of just two grids

to interpolate points with height differences larger

than 1500 m. If we divide the dataset on two subsets

according to the points altitude (e.g. fixing a thresh-

old to discriminate between the two subsets at

1800 m) the standard deviation of the differences

between the VERYSLOW and the other GTE profiles

drops to about 0.2 mGal. In any case we should keep

Table 3

Statistics and computational time on 1000 points for the different profiles and software tested

Profile name Time (s) Mean (mGal) Std (mGal) Max (mGal) Min (mGal)

SLOW 312.7 180.3 41.7 302.5 -57.0

VERYFAST 23.8 -0.11 0.96 2.6 -7.6

FAST 58.8 -0.21 0.95 2.2 -7.7

TRADEOFF 197.6 0.20 0.95 2.2 -7.7

GRAVSOFT 7.1 -7.18 2.53 -2.1 -12.2

Tesseroids 309.7 -2.2 0.30 -1.58 -2.75

Flat prism approx. – -0.002 0.26 -1.21 -2.31

SLOW profile shows statistics on the computed signal. For the other rows the statistics are referred to the difference between each result and

the terrain effect computed with the SLOW profile
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in mind that these results refer to an extreme DTM

with an unrealistic situation, since it is probably

unsafe to fly so close to the ground with such a rough

topography. It should also be observed that in this test

GRAVSOFT is the fastest software, however it gives

quite inaccurate results with differences with respect

to the SLOW profile and to Tesseroids larger than

2 mGal (in terms of standard deviation). In both the

comparisons it should be underlined that the fact of

having always a positive topography, and of com-

puting the gravitational effect just over the highest

peaks, is not helping. In fact the three TC algorithms

tested adopt different reference frames which implies

different masses for the same DTM cell. As a con-

sequence the gravitational signal due to this

inconsistency has the same sign for all the cells grid

and therefore cumulate giving high differences in

terms of mean value when comparing the results. In

any case it is important to note that in geophysics

exploration applications the average value of the field

is not so important and is usually disregarded. As for

the flat topped prism approximation, in this extreme

scenario where we suppose an airplane flying at only

150 m above the topography over a mountainous

area, shows a standard deviation of 0.26 mGal, which

is smaller than the approximation introduced by the

use of FFT solutions.

The last test has been performed on a more real-

istic (and less extreme dataset): a real airborne

acquisition performed in the framework of the Car-

bonNet project (DOPI 2012) has been in fact used.

The dataset is made of 404, 384 real airborne

observations acquired in 2011 by Sander Geophysics

Ltd. to provide a better understanding of the onshore,

Figure 12
Digital terrain model used for the last test. Black dots represent observation points downsampled by a factor of 50
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nearshore and immediate offshore geology of the

Gippsland Basin, a sedimentary basin situated in

south-eastern Australia, about 200 km east of the city

of Melbourne. A DTM with spatial resolution of

250 m, based on AusGeo model (WHITEWAY 2009),

and covering the region between 37:3� and 39:4� S,

and 146:2� and 148:9� E for a total number of 819 by

1093 grid cells has been used. The height of the DTM

is ranging between 1700 m of the Mount Howitt and

�2754 m in correspondence of the beginning of the

Bass Canyon with an average height of only 20 m

and a standard deviation of 503 m. The aeroplane is

flying 165 m above the ocean offshore and follows

the topography on shore with a maximum altitude of

369 m. The DTM used as well as the survey tracks

are shown in Fig. 12.

Results are shown in Table 4 where it can be seen

how the use of the FFT allows to compute the terrain

correction for the considered dataset in less than 1 h

while classical software, like GRAVSOFT or Tes-

seroids, requires from few hours up to more than

1 day.

Actually the VERYFAST profile gives a quick-

look of the terrain effect with errors of the order of

0.1 mGal (standard deviations) in less than 10 min,

while the FAST profile will give in about 20 min

results which are one order of magnitude more

accurate (0.016 mGal standard deviation) than any

airborne gravimetric survey, thus confirming the

goodness of GTE software for this kind of applica-

tion. The VERYSLOW profile, completely exploiting

the potentiality of the machine used for the test, takes

only 4 h to compute the solution. Again GRAVSOFT

shows the farthest results but computed in a time

comparable to those of the VERYSLOW solution.

The Tesseroids software is the slowest with more

than 5 days of computational time with results very

close to those of the GTE software. Again it should

be reminded that the large part of this difference is

probably due the fact that Tesseroids works in

spherical approximation. Coming to the flat prism

approximation, here it has been evaluated only on

10 % (randomly chosen) of the observation points.

Again it can be seen that this effect can be disre-

garded when dealing with airborne observations,

having a standard deviation of only 0.01 mGal.

5. Conclusions

In this paper we have presented a new software,

called GTE, for the computation of the gravitational

terrain effect. The GTE solution is basically a com-

bination of FFT techniques and classical prism

modelling aiming to keep errors lower than 0.1 mGal.

In detail GTE has been developed addressing two

major issues required by modern geodetic and geo-

physical applications, namely high accuracy and high

computational performances. As theoretically and

numerically proven in the paper planar approximation

can in general be used, thus simplifying the problem,

when dealing with regions smaller than 200 �
200 km, which is the typical situation of local geo-

physical applications based on airborne gravimetric

Table 4

Statistics and computational time on 404, 384 points for the different profiles and software tested. VERYSLOW shows statistics on the

computed signal

Profile name Time (s) Mean (mGal) Std (mGal) Max (mGal) Min (mGal)

VERYSLOW 1:5 � 104 �0.67 4.44 20.21 -8.46

VERYFAST 459 �0.66 0.11 �0.26 -0.95

FAST 1112 �0.043 0.016 10�3 -0.082

TRADEOFF 2632 �0.035 0.016 10�3 -0.077

SLOW 7457 �0.034 0.014 10�3 -0.070

GRAVSOFT 2 � 104 1.2 0.31 3.1 0.27

Tesseroids 5 � 105 0.062 0.021 0.11 0.015

Flat prism approx. – 4 � 10�4 0.011 0.11 -0.05

For the other rows the statistics are referred to the difference between each result and the terrain effect computed with the VERYSLOW

profile
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surveys. In any case some correction terms to account

also for the main effects of spherical approximation

have been also illustrated. To compute the terrain

correction by means of Fourier algorithms, Newton’s

integral has been expanded in a Taylor series. Some

solutions to address the problems of the convergence

of the series (slicing) and of its singularity (prism-

FFT mixed algorithm) are also presented.

The comparisons performed have shown that GTE

gives results very close to those obtained by prism

equation with differences in the case of a real air-

borne survey of the order of 10�2 mGal in about

20 min. This differences slightly increase to

0.06 mGal (average) and 0.021 mGal (standard

deviation) if the results are compared with those in

spherical approximation computed by Tesseroids.
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