28 research outputs found

    Microfluidics: A Groundbreaking Technology for PET Tracer Production?

    Get PDF
    Application of microfluidics to Positron Emission Tomography ( PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed

    A solvent resistant lab-on-chip platform for radiochemistry applications

    Get PDF
    The application of microfluidics to the synthesis of Positron Emission Tomography (PET) tracers has been explored for more than a decade. Microfluidic benefits such as superior temperature control have been successfully applied to PET tracer synthesis. However, the design of a compact microfluidic platform capable of executing a complete PET tracer synthesis workflow while maintaining prospects for commercialization remains a significant challenge. This study uses an integral system design approach to tackle commercialization challenges such as the material to process compatibility with a path towards cost effective lab-on-chip mass manufacturing from the start. It integrates all functional elements required for a simple PET tracer synthesis into one compact radiochemistry platform. For the lab-on-chip this includes the integration of on-chip valves, on-chip solid phase extraction (SPE), on-chip reactors and a reversible fluid interface while maintaining compatibility with all process chemicals, temperatures and chip mass manufacturing techniques. For the radiochemistry device it includes an automated chip-machine interface enabling one-move connection of all valve actuators and fluid connectors. A vial-based reagent supply as well as methods to transfer reagents efficiently from the vials to the chip has been integrated. After validation of all those functional elements, the microfluidic platform was exemplarily employed for the automated synthesis of a Gastrin-releasing peptide receptor (GRP-R) binding the PEGylated Bombesin BN(7-14)-derivative (F-18]PESIN) based PET tracer

    Activated Lymphocytes and Increased Risk of Dermatologic Adverse Events during Sorafenib Therapy for Hepatocellular Carcinoma

    Get PDF
    Altres ajuts: Asociación Española Contra el Cáncer PI044031Hepatocellular carcinoma is the second cause of cancer-related death worldwide. Of those advanced-stage patients who are treated with sorafenib, those who develop early dermatologic adverse events have a better prognosis. These events are possibly immune-related. Therefore, we analyzed the phenotype of 52 sorafenib-treated patients' circulating lymphocytes throughout treatment. We found that different co-stimulatory and immune exhaustion markers, such as Programmed cell death protein 1 (PD-1) and DNAX accessory molecule 1 (DNAM-1) amongst others, correlate with the probability of developing these adverse events, both before and during the treatment. We also compared the phenotype of those lymphocytes expressing DNAM-1 with those that do not, and while NK DNAM-1-expressing cells have a co-stimulatory phenotype, T DNAM-1-expressing cells are immune-suppressors. Overall, we set a rationale for the combination of sorafenib and immune-targeted therapies; and for the use of immune markers (such as DNAM-1) for patients' prognosis evaluation. Advanced hepatocellular carcinoma patients treated with sorafenib who develop early dermatologic adverse events (eDAEs) have a better prognosis. This may be linked to immune mechanisms, and thus, it is relevant to assess the association between peripheral immunity and the probability of developing eDAEs. Peripheral blood mononuclear cells of 52 HCC patients treated with sorafenib were analyzed at baseline and throughout the first eight weeks of therapy. T, B, Natural Killer cells, and their immune checkpoints expression data were characterized by flow cytometry. Cytokine release and immune-suppression assays were carried out ex vivo. Cox baseline and time-dependent regression models were applied to evaluate the probability of increased risk of eDAEs. DNAM-1, PD-1, CD69, and LAG-3 in T cells, plus CD16 and LAG-3 in NK cells, are significantly associated with the probability of developing eDAEs. While NK DNAM-1 + cells express activation markers, T DNAM-1 + cells induce immune suppression and show immune exhaustion. This is the first study to report an association between immune checkpoints expression in circulating immune cells and the increased incidence of eDAEs. Our results support the hypothesis for an off-target role of sorafenib in immune modulation. We also describe a novel association between DNAM-1 and immune exhaustion in T cells

    Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production

    Full text link
    Abstract Background PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. Results ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. Conclusions ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.https://deepblue.lib.umich.edu/bitstream/2027.42/152186/1/41181_2019_Article_77.pd

    Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology

    Get PDF
    BACKGROUND: The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database. RESULTS: The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network. CONCLUSION: Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress

    Micromixer apparatus and methods of using same

    No full text
    US7160025Granted Paten

    Microfluidics chips and methods of using same

    No full text
    US7335984Granted Paten

    Microfluidics packages and methods of using same

    No full text
    US7357898Granted Paten
    corecore