1,388 research outputs found

    Wrong sign and symmetric limits and non-decoupling in 2HDMs

    Get PDF
    We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These \textit{wrong signs} can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the \textit{symmetric limit}, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1σ\sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tanβ\tan \beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.Comment: 20 pages, 15 figure

    The CP-conserving 2HDM after the 8 TeV run

    Full text link
    We confront the most common CP-conserving 2HDM with the LHC data analysed so far while taking into account all previously available experimental data. A special allowed corner of the parameter space is analysed - the so-called wrong-sign scenario where the Higgs coupling to down-type quarks changes sign relative to the Standard Model while the coupling to the massive vector bosons does not.Comment: 6 pages, 2 figures, to appear in the proceedings of the 22nd International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2014), 28 April - 2 May 2014 Warsaw (Poland

    The Wrong Sign limit in the 2HDM

    Full text link
    A sign change in the Higgs couplings to fermions and massive gauge bosons is still allowed in the framework of two-Higgs doublet models (2HDM). In this work we discuss the possible sign changes in the Higgs couplings to fermions and gauge bosons, while reviewing the status of the 8-parameter CP-conserving 2HDM after the Large Hadron Collider 8 TeV run.Comment: 6 pages, 3 figures. Proceedings of the Second Annual Conference on Large Hadron Collider Physics, Columbia University, New York, U.S.A, June 2-7, 2014. arXiv admin note: text overlap with arXiv:1407.439

    Charge Influence On Mini Black Hole's Cross Section

    Full text link
    In this work we study the electric charge effect on the cross section production of charged mini black holes (MBH) in accelerators. We analyze the charged MBH solution using the {\it fat brane} approximation in the context of the ADD model. The maximum charge-mass ratio condition for the existence of a horizon radius is discussed. We show that the electric charge causes a decrease in this radius and, consequently, in the cross section. This reduction is negligible for protons and light ions but can be important for heavy ions.Comment: 4 pages, 0 figure. To be published in Int. J. Mod. Phys. D

    ScannerS: parameter scans in extended scalar sectors

    Get PDF
    We present the public code ScannerS–2 that performs parameter scans and checks parameter points in theories beyond the Standard Model (BSM) with extended scalar sectors. ScannerS incorporates theoretical and experimental constraints from many different sources in order to judge whether a parameter point is allowed or excluded at approximately 95% {CL}. The BSM models implemented in ScannerS include many popular BSM models such as singlet extensions, different versions of the Two-Higgs-Doublet Model, or the different phases of the Next-to Two-Higgs-Doublet Model. The ScannerS framework allows straightforward extensions by additional constraints and BSM models

    Two-loop stability of a complex singlet extended Standard Model

    Get PDF
    Motivated by the dark matter and the baryon asymmetry problems, we analyse a complex singlet extension of the Standard Model (SM) with a Z2 symmetry (which provides a dark matter candidate). After a detailed two-loop calculation of the renormalization group equations for the new scalar sector, we study the radiative stability of the model up to a high energy scale (with the constraint that the 126 GeV Higgs boson found at the LHC is in the spectrum) and find it requires the existence of a new scalar state mixing with the Higgs with a mass larger than 140 GeV. This bound is not very sensitive to the cut-off scale as long as the latter is larger than 10^10 GeV. We then include all experimental and observational constraints/measurements from collider data, dark matter direct detection experiments and from the Planck satellite and in addition force stability at least up to the GUT scale, to find that the lower bound is raised to about 170 GeV, while the dark matter particle must be heavier than about 50 GeV

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures

    Diversidade florística e fitossociológica do tapete herbáceo da caatinga na reserva legal do Salitre, Juazeiro-BA.

    Get PDF
    Para amostragem das herbáceas foi adotado o método das parcelas, com 50m2 de área amostral em cada microhabitate

    Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings

    Get PDF
    "Author's copy"In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin films for food-packaging applications were developed. The main goal was to determine the influence of coatings morphology and thickness on the antimicrobial performance of the produced samples. The ZnO based thin films were deposited on PET (Polyethylene terephthalate) substrates by means of DC reactive magnetron sputtering. The thin films were characterized by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped columns. The increase of ZnO coatings thickness until 200 nm increases the active surface area of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones (200–600 nm). Regarding Ag-doped ZnO thin films, it was verified that increasing the silver content decreases the growth rate of Escherichia coli and decreases the amount of bacteria cells present at the end of the experiment.The work described in this paper was supported by project NANOPACKSAFER: NANO-engineered PACKaging systems for improving quality, SAFEty and health characteristics of foods, Portugal-Spain International Nanotechnology Laboratory Nanotechnology Projects Call; and also by the FEDER funding through the COMPETE program and FCT PEst-C/BIA/UI4050/2011 project
    corecore