4 research outputs found

    Grouping Method Of Image Fragments Of Adjacent Dislocation Etch Pits Of The Semiconductor Wafer

    Full text link
    An increase in production volumes of gallium arsenide semiconductor devices determines the need for better control of dislocations of semiconductor wafer.The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer is proposed in the article. Adjacent fragments will be allocated in the pre-binarized image of wafer surface, which contains adjacent fragments of etch pits of dislocation loops after treatment by the described method. Improved methods for determining the loop line width determines the edge line width of etch pits of suspected dislocations, given the variability of their display in the binarized image. The current loop line width is compared to the reference line width of the dislocation loop.The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer defines recovery of loop lines branching, takes into account various options of line adjacency and determines the direction of further recovery of loop line of dislocation etch pits. A step by step description of the method is given

    Simple Route to Increase Electrical Conductivity and Optical Transmittance in Graphene/Silver Nanoparticles Hybrid Suspensions

    No full text
    Electrical and optical properties of graphene/silver nanoparticles hybrid suspensions intended for use in inkjet printing technologies were studied. Few-layered graphene particles were manufactured via a direct ultrasonic-assisted liquid-phase exfoliation route in water/surfactant system, whereas silver nanoparticles were synthetized using a polyol process. Hybrid suspensions for graphene/silver nanoparticles mixtures showed significant reduction in mean particle size while electrical conductivity remained almost intact even after thorough centrifugation. Structuring effects in mixed colloids were very pronounced as both electrical conductivity and optical transmission showed maxima at 65 wt.% graphene. Suspensions with conductivities above 300 μSm/cm, much higher than previously reported, were obtained, and resulted in the manufacturing of films with less than 10% optical absorption throughout the visible region. These samples did not demonstrate absorption peaks attributed to silver nanoparticles’ surface plasmon resonance, which is suitable for transparent electrode applications. Suspension properties at optimal composition (65 wt.% graphene) are very promising for printed electronics as well as transparent conductive coating applications. In the paper, we establish that the optimal suspension composition matches that of the film; therefore, more attention should be paid to carefully studying electrically conductive suspensions

    Simple Route to Increase Electrical Conductivity and Optical Transmittance in Graphene/Silver Nanoparticles Hybrid Suspensions

    No full text
    Electrical and optical properties of graphene/silver nanoparticles hybrid suspensions intended for use in inkjet printing technologies were studied. Few-layered graphene particles were manufactured via a direct ultrasonic-assisted liquid-phase exfoliation route in water/surfactant system, whereas silver nanoparticles were synthetized using a polyol process. Hybrid suspensions for graphene/silver nanoparticles mixtures showed significant reduction in mean particle size while electrical conductivity remained almost intact even after thorough centrifugation. Structuring effects in mixed colloids were very pronounced as both electrical conductivity and optical transmission showed maxima at 65 wt.% graphene. Suspensions with conductivities above 300 μSm/cm, much higher than previously reported, were obtained, and resulted in the manufacturing of films with less than 10% optical absorption throughout the visible region. These samples did not demonstrate absorption peaks attributed to silver nanoparticles’ surface plasmon resonance, which is suitable for transparent electrode applications. Suspension properties at optimal composition (65 wt.% graphene) are very promising for printed electronics as well as transparent conductive coating applications. In the paper, we establish that the optimal suspension composition matches that of the film; therefore, more attention should be paid to carefully studying electrically conductive suspensions
    corecore