145 research outputs found
Recommended from our members
Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand
The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone
Biogenetically-Inspired Total Synthesis of Epidithiodiketopiperazines and Related Alkaloids
Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules.National Institute of General Medical Sciences (U.S.) (Grant GM089732)Amgen Inc
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors1, 2, 3, 4, 5, 6, 7, 8, 9. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications10, 11, 12, 13, 14, 15. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm−1 at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides
Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp507826jWe report a joint experimental and theoretical study of the structural and vibrational properties of synthetic sphaerobismoite (beta-Bi2O3) at high pressures in which room-temperature angle-dispersive X-ray diffraction (XRD) and Raman scattering measurements have been complemented with ab initio total energy and lattice dynamics calculations. Striking changes in Raman spectra were observed around 2 GPa, whereas X-ray diffraction measurements evidence no change in the tetragonal symmetry of the compound up to 20 GPa; however, a significant change exists in the compressibility when increasing pressure above 2 GPa. These features have been understood by means of theoretical calculations, which show that beta-Bi2O3 undergoes a pressure-induced isostructural phase transition near 2 GPa. In the new isostructural beta' phase, the Bi3+ and O2- environments become more regular than those in the original beta phase because of the strong decrease in the activity of the lone electron pair of Bi above 2 GPa. Raman measurements and theoretical calculations provide evidence of the second-order nature of the pressure-induced isostructural transition. Above 20 GPa, XRD measurements suggest a partial amorphization of the sample despite Raman measurements still show weak peaks, probably related to a new unknown phase which remains up to 27 GPa. On pressure release, XRD patterns and Raman spectra below 2 GPa correspond to elemental Bi-I, thus evidencing a pressure-induced decomposition of the sample during downstroke.Financial support from the Spanish Consolider Ingenio 2010 Program (MALTA Project CSD2007-00045) is acknowledged. This work was also supported by Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under Project 201050/2012-9, Spanish MICINN under Projects MAT2010-21270-004-01/03/04 and MAT2013-46649-C4-2/3/4-P, Spanish MINECO under Project CTQ2012-36253-C03-02, and from Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. JAS. acknowledges Juan de la Cierva fellowship program for financial support.Pereira, ALJ.; Sans Tresserras, JÁ.; Vilaplana Cerda, RI.; Gomis, O.; Manjón Herrera, FJ.; Rodriguez-Hernandez, P.; Muñoz, A.... (2014). Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study. Journal of Physical Chemistry C. 118(40):23189-23201. https://doi.org/10.1021/jp507826jS23189232011184
- …