14 research outputs found

    A Phase 2b randomised, controlled, partially blinded trial of the HIV Nucleoside Reverse Transcriptase Inhibitor BMS-986001 (AI467003): Weeks 24 and 48 Efficacy, Safety, Bone and Metabolic Results

    Get PDF
    Background BMS-986001 is a thymidine analogue nucleoside reverse transcriptase inhibitor (NRTI) designed to maintain in-vitro antiviral activity while minimising off-target effects. We assessed the efficacy and safety of BMS-986001 versus tenofovir disoproxil fumarate in treatment-naive patients with HIV-1. Methods In this phase 2b, randomised, active-controlled trial (AI467003), we recruited treatment-naive (no current or previous exposure to an antiretroviral drug for >1 week) adults (aged at least 18 years) with HIV-1 from 47 sites across Asia, Australia, Europe, North America, South Africa, and South America. Patients with plasma HIV-1 RNA greater than 5000 copies per mL and CD4 counts greater than 200 cells per μL were randomly assigned (2:2:2:3) to receive BMS-986001 100 mg, 200 mg, or 400 mg once a day or to receive tenofovir disoproxil fumarate 300 mg once a day; each allocation was given with efavirenz 600 mg once a day and lamivudine 300 mg once a day. Both patients and investigators were masked to BMS-986001 dose (achieved with similar looking placebo tablets), but not allocation up to and including week 48. The primary endpoints were the proportion of patients with plasma HIV-1 RNA less than 50 copies per mL and safety events (serious adverse events and adverse events leading to discontinuation) through week 24; the main analysis was with a modified intention-to-treat population. Resistance analysis was a secondary endpoint, and additional safety parameters were exploratory endpoints. This trial is registered with ClinicalTrials.gov, number NCT01489046, and the European Clinical Trials Database, number EudraCT 2011-003329-89. Findings Patients were recruited between Jan 25, 2012, and Oct 3, 2012; 757 patients were assessed for eligibility and 301 were randomly assigned to receive either BMS-986001 once a day (67 patients to 100 mg, 67 to 200 mg, and 66 to 400 mg) or tenofovir disoproxil fumarate (n=101). 297 patients received at least one dose of study drug. At week 24, 57 (88%) of 65 patients for whom there were data in the 100 mg group, 54 (81%) of 67 in the 200 mg group, 62 (94%) of 66 in the 400 mg group achieved HIV-1 RNA less than 50 copies per mL, compared with 88 (89%) of 99 in the tenofovir disoproxil fumarate group (modified intention-to-treat population). BMS-986001 was generally well tolerated through week 48. Two patients had BMS-986001-related serious adverse events (atypical drug eruption and thrombocytopenia) and two in the tenofovir disoproxil fumarate group had study drug-related serious adverse events (potential drug-induced liver injury and depression or lipodystrophy) that led to discontinuation. NRTI resistance-associated mutations were reported in four (2%) of 198 patients, and non-NRTI mutations in 17 (9%) of 198 patients receiving BMS-986001 versus none of 99 and one (1%) of 99 patients receiving tenofovir disoproxil fumarate, respectively. Compared with tenofovir disoproxil fumarate, individuals in the BMS-986001 groups showed a smaller decrease in lumbar spine and hip bone mineral density but greater accumulation of limb and trunk fat, subcutaneous and visceral adipose tissue, and increased total cholesterol. Interpretation BMS-986001 had similar efficacy to that of tenofovir disoproxil fumarate and was associated with a smaller decrease in bone mineral density; however, greater resistance and gains in both peripheral and central fat accumulation were recorded for the investigational drug. Bristol-Myers Squibb has discontinued its involvement in the development of BMS-986001, and future decisions on development will be made by Oncolys BioPharma

    Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells

    Get PDF
    Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines

    Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study.

    No full text
    GSK3532795 (formerly BMS955176) is a second-generation maturation inhibitor (MI) that progressed through a Phase 2b study for treatment of HIV-1 infection. Resistance development to GSK3532795 was evaluated through in vitro methods and was correlated with information obtained in a Phase 2a proof-of-concept study in HIV-1 infected participants. Both low and high concentrations of GSK3532795 were used for selections in vitro, and reduced susceptibility to GSK3532795 mapped specifically to amino acids near the capsid/ spacer peptide 1 (SP1) junction, the cleavage of which is blocked by MIs. Two key substitutions, A364V or V362I, were selected, the latter requiring secondary substitutions to reduce susceptibility to GSK3532795. Three main types of secondary substitutions were observed, none of which reduced GSK3532795 susceptibility in isolation. The first type was in the capsid C-terminal domain and downstream SP1 region (including (Gag numbering) R286K, A326T, T332S/N, I333V and V370A/M). The second, was an R41G substitution in viral protease that occurred with V362I. The third was seen in the capsid N-terminal domain, within the cyclophilin A binding domain (V218A/M, H219Q and G221E). H219Q increased viral replication capacity and reduced susceptibility of poorly growing viruses. In the Phase 2a study, a subset of these substitutions was also observed at baseline and some were selected following GSK35323795 treatment in HIV-1-infected participants

    Safety, efficacy, and dose response of the maturation inhibitor GSK3532795 (formerly known as BMS-955176) plus tenofovir/emtricitabine once daily in treatment-naive HIV-1-infected adults: Week 24 primary analysis from a randomized Phase IIb trial.

    Get PDF
    GSK3532795 (formerly known as BMS-955176) is a second-generation maturation inhibitor targeting a specific Gag cleavage site between capsid p24 and spacer peptide 1 of HIV-1. Study 205891 (previously AI468038) investigated the efficacy, safety, and dose response of GSK3532795 in treatment-naive, HIV-1-infected participants. Study 205891 (NCT02415595) was a Phase IIb, randomized, active-controlled, double-blind, international trial. Participants were randomized 1:1:1:1 to one of three GSK3532795 arms at doses 60 mg, 120 mg or 180 mg once daily (QD), or to efavirenz (EFV) at 600 mg QD, each in combination with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) (300/200 mg QD). Primary endpoint was proportion of participants with plasma HIV-1 RNA <40 copies/mL at Week 24. Between May 2015 and May 2016, 206 participants received treatment. At Week 24, 76-83% participants receiving GSK3532795 and 77% receiving EFV achieved HIV-1 RNA <40 copies/mL. Fifteen participants receiving GSK3532795 and one receiving EFV met resistance testing criteria; 10/15 receiving GSK3532795 had emergent substitutions at reverse transcriptase positions M184, and one at position K65, while the participant receiving EFV did not have any nucleoside reverse transcriptase inhibitor (NRTI)/non-NRTI mutations. EFV, relative to GSK3532795, had more serious adverse events (9% versus 5%) and adverse events leading to discontinuation (17% versus 5%). However, 3-4-fold higher rates of gastrointestinal adverse events were observed with GSK3532795 relative to EFV. GSK3532795 combined with TDF/FTC is efficacious with 24 weeks of therapy. However, GSK3532795 showed a higher rate of gastrointestinal intolerability and treatment-emergent resistance to the NRTI backbone relative to EFV. Trial registration: ClinicalTrials.gov NCT02415595
    corecore