1,536 research outputs found
The British Asian Option
Following the economic rationale of [7] and [8] we present a new class of Asian options where the holder enjoys the early exercise feature of American options whereupon his payoff (deliverable immediately) is the ‘best prediction’ of the European payoff under the hypothesis that the true drift of the stock price equals a contract drift. Inherent in this is a protection feature which is key to the British Asian option. Should the option holder believe the true drift of the stock price to be unfavourable (based upon the observed price movements) he can substitute the true drift with the contract drift and minimise his losses. The practical implications of this protection feature are most remarkable as not only is the option holder afforded a unique protection against unfavourable stock price movements (covering the ability to sell in a liquid market completely endogenously) but also when the stock price movements are favourable he will generally receive high returns. We derive a closed form expression for the arbitrage-free price in terms of the rational exercise boundary and show that the rational exercise boundary itself can be characterised as the unique solution to a nonlinear integral equation. Using these results we perform a financial analysis of the British Asian option that leads to the conclusions above and shows that with the contract drift properly selected the British Asian option becomes a very attractive alternative to the classic (European) Asian option.British Asian option; American Asian option; European Asian option; fixed/floating strike; arithmetic/geometric average; flexible Asian options; arbitrage-free price; rational exercise boundary; liquid/illiquid market; geometric Brownian motion; the Shiryaev process; optimal stopping, parabolic free-boundary problem; nonlinear integral equation; local time-space calculus
The British Russian Option
Following the economic rationale of [10] and [11] we present a new class of lookback options (by first studying the canonical 'Russian' variant) where the holder enjoys the early exercise feature of American options where upon his payoff (deliverable immediately) is the 'best prediction' of the European payoff under the hypothesis that the true drift of the stock price equals a contract drift. Inherent in this is a protection feature which is key to the British Russian option. Should the option holder believe the true drift of the stock price to be unfavourable (based upon the observed price movements) he can substitute the true drift with the contract drift and minimise his losses. The practical implications of this protection feature are most remarkable as not only is the option holder afforded a unique protection against unfavourable stock price movements (covering thea bility to sell in a liquid market completely endogenously) but also when the stock price movements are favourable he will generally receive high returns. We derive a closed form expression for the arbitrage-free price in terms of the rational exercise boundary and show that the rational exercise boundary itself can be characterised as the unique solution to a nonlinear integral equation. Using these results we perform a financial analysis of the British Russian option that leads to the conclusions above and shows that with the contract drift properly selected the British Russian option becomes a very attractive alternative to the classic European/American Russian option.
Deterministic, Stash-Free Write-Only ORAM
Write-Only Oblivious RAM (WoORAM) protocols provide privacy by encrypting the
contents of data and also hiding the pattern of write operations over that
data. WoORAMs provide better privacy than plain encryption and better
performance than more general ORAM schemes (which hide both writing and reading
access patterns), and the write-oblivious setting has been applied to important
applications of cloud storage synchronization and encrypted hidden volumes. In
this paper, we introduce an entirely new technique for Write-Only ORAM, called
DetWoORAM. Unlike previous solutions, DetWoORAM uses a deterministic,
sequential writing pattern without the need for any "stashing" of blocks in
local state when writes fail. Our protocol, while conceptually simple, provides
substantial improvement over prior solutions, both asymptotically and
experimentally. In particular, under typical settings the DetWoORAM writes only
2 blocks (sequentially) to backend memory for each block written to the device,
which is optimal. We have implemented our solution using the BUSE (block device
in user-space) module and tested DetWoORAM against both an encryption only
baseline of dm-crypt and prior, randomized WoORAM solutions, measuring only a
3x-14x slowdown compared to an encryption-only baseline and around 6x-19x
speedup compared to prior work
Cardiovascular disorders in patients with different ways of hiv transmission
Background. Cardiovascular disorders (CVDs) occur in each 10th patients infected with
HIV. Emergence of this group of diseases related to direct action of the virus and opportunistic infections, exposure to antiretroviral drugs, smoking, heredity, age. CVDs associated with HIV include atherosclerosis, coronary heart disease, vasculitis, pulmonary hypertension, heart tumors, dilated cardiomyopathy, pericarditis, myocarditis, endocarditis. Heart diseases are more common in persons with HIV, develop in younger age and occur aggressively compared to the general population. However, CVDs in HIV-infected patients with different ways of virus transmission are not specified
Imbalances in directed multigraphs
In a directed multigraph, the imbalance of a vertex is defined as
, where and
denote the outdegree and indegree respectively of . We
characterize imbalances in directed multigraphs and obtain lower and upper
bounds on imbalances in such digraphs. Also, we show the existence of a
directed multigraph with a given imbalance set
Parametric Structural Model for a Mars Entry Concept
This paper outlines the process of developing a parametric model for a vehicle that can withstand Earth launch and Mars entry conditions. This model allows the user to change a variety of parameters ranging from dimensions and meshing to materials and atmospheric entry angles to perform finite element analysis on the model for the specified load cases. While this work focuses on an aeroshell for Earth launch aboard the Space Launch System (SLS) and Mars entry, the model can be applied to different vehicles and destinations. This specific project derived from the need to deliver large payloads to Mars efficiently, safely, and cheaply. Doing so requires minimizing the structural mass of the body as much as possible. The code developed for this project allows for dozens of cases to be run with the single click of a button. The end result of the parametric model gives the user a sense of how the body reacts under different loading cases so that it can be optimized for its purpose. The data are reported in this paper and can provide engineers with a good understanding of the model and valuable information for improving the design of the vehicle. In addition, conclusions show that the frequency analysis drives the design and suggestions are made to reduce the significance of normal modes in the design
Finite Element Modeling and Analysis of Mars Entry Aeroshell Baseline Concept
The structure that is developed and analyzed in this project must be able to survive all the various load conditions that it will encounter along its course to Mars with the minimal amount of weight and material. At this stage, the goal is to study the capability of the structure using a finite element model (FEM). This FEM is created using a python script, and is numerically solved in Nastran. The purpose of the model is to achieve an optimization of mass given specific constraints on launch and entry. The generation and analysis of the baseline Rigid Mid-Range Lift to Drag Ratio Aeroshell model is a continuation and an improvement on previous work done for the FEM. The model is generated using Python programming with the axisymmetric placement of nodes for beam and shell elements. The shells are assigned a honeycomb sandwich material with an aluminum honeycomb core and composite face sheets, and the beams are assigned the same material as the shell face sheets. There are two load cases assigned to the model: Earth launch and Mars entry. The Earth launch case consists of pressure, gravity, and vibration loads, and the Mars entry case consists of just pressure and gravity loads. The Earth launch case was determined to be the driving case, though the analyses are performed for both cases to ensure the constraints are satisfied. The types of analysis performed with the model are design optimization, statics, buckling, normal modes, and frequency response, the last of which is only for the Earth launch load case. The final results indicated that all of the requirements are satisfied except the thermal limits, which could not yet be tested, and the normal modes for the Mars entry. However, the frequency limits during Mars entry are expected to be much higher than the lower frequency limits set for the analysis. In addition, there are still improvements that can be made in order to reduce the weight while still meeting all requirements
- …
