62 research outputs found
Common transversals and complements in abelian groups
Given a finite abelian group G and cyclic subgroups A, B, C of G of the same order, we find necessary and sufficient conditions for A, B, C to admit a common transversal for the cosets they afford. For an arbitrary number of cyclic subgroups, we give a sufficient criterion when there exists a common complement. Moreover, in several cases where a common transversal exists, we provide concrete constructions
Local-field correction to one- and two-atom van der Waals interactions
Based on macroscopic quantum electrodynamics in linearly and causally
responding media, we study the local-field corrected van der Waals potentials
and forces for unpolarized ground-state atoms placed within a magnetoelectric
medium of arbitrary size and shape. We start from general expressions for the
van der Waals potentials in terms of the (classical) Green tensor of the
electromagnetic field and the atomic polarizability and incorporate the
local-field correction by means of the real-cavity model. In this context,
special emphasis is given to the decomposition of the Green tensor into a
medium part multiplied by a global local-field correction factor and, in the
single-atom case, a part that only depends on the cavity characteristics. The
result is used to derive general formulas for the local-field corrected van der
Waals potentials and forces. As an application, we calculate the van der Waals
potential between two ground-state atoms placed within magnetoelectric bulk
material.Comment: 9 pages, 2 figures, corrections according to erratu
Casimir force on amplifying bodies
Based on a unified approach to macroscopic QED that allows for the inclusion
of amplification in a limited space and frequency range, we study the Casimir
force as a Lorentz force on an arbitrary partially amplifying system of
linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate
that the force on a weakly polarisable/magnetisable amplifying object in the
presence of a purely absorbing environment can be expressed as a sum over the
Casimir--Polder forces on the excited atoms inside the body. As an example, the
resonant force between a plate consisting of a dilute gas of excited atoms and
a perfect mirror is calculated
Casimir-Polder interaction between an atom and a small magnetodielectric sphere
On the basis of macroscopic quantum electrodynamics and point-scattering
techniques, we derive a closed expression for the Casimir-Polder force between
a ground-state atom and a small magnetodielectric sphere in an arbitrary
environment. In order to allow for the presence of both bodies and media,
local-field corrections are taken into account. Our results are compared with
the known van der Waals force between two ground-state atoms. To continuously
interpolate between the two extreme cases of a single atom and a macroscopic
sphere, we also derive the force between an atom and a sphere of variable
radius that is embedded in an Onsager local-field cavity. Numerical examples
illustrate the theory.Comment: 9 pages, 4 figures, minor addition
Local-field corrected van der Waals potentials in magnetodielectric multilayer systems
Within the framework of macroscopic quantum electrodynamics in linear, causal
media, we study the van der Waals potentials of ground-state atoms in planar
magnetodielectric host media. Our investigation extends earlier ones in two
aspects: It allows for the atom to be embedded in a medium, thus covers many
more realistic systems; and it takes account of the local-field correction.
Two- and three-layer configurations are treated in detail both analytically and
numerically. It is shown that an interplay of electric and magnetic properties
in neighbouring media may give rise to potential wells or walls. Local-field
corrections as high as 80% are found. By calculating the full potential
including the translationally invariant and variant parts, we propose a way to
estimate the (finite) value of the dispersion potential at the surface between
two media. Connection with earlier work intended for biological applications is
established.Comment: 12 pages, 5 figure
The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Province, Papua New Guinea, pre- and post-implementation of national malaria control efforts
Background
In the past decade, national malaria control efforts in Papua New Guinea (PNG) have received renewed support, facilitating nationwide distribution of free long-lasting insecticidal nets (LLINs), as well as improvements in access to parasite-confirmed diagnosis and effective artemisinin-combination therapy in 2011–2012.
Methods
To study the effects of these intensified control efforts on the epidemiology and transmission of Plasmodium falciparum and Plasmodium vivax infections and investigate risk factors at the individual and household level, two cross-sectional surveys were conducted in the East Sepik Province of PNG; one in 2005, before the scale-up of national campaigns and one in late 2012-early 2013, after 2 rounds of LLIN distribution (2008 and 2011–2012). Differences between studies were investigated using Chi square (χ2), Fischer’s exact tests and Student’s t-test. Multivariable logistic regression models were built to investigate factors associated with infection at the individual and household level.
Results
The prevalence of P. falciparum and P. vivax in surveyed communities decreased from 55% (2005) to 9% (2013) and 36% to 6%, respectively. The mean multiplicity of infection (MOI) decreased from 1.8 to 1.6 for P. falciparum (p = 0.08) and from 2.2 to 1.4 for P. vivax (p 50% of household members with Plasmodium infection).
Conclusion
After the scale-up of malaria control interventions in PNG between 2008 and 2012, there was a substantial reduction in P. falciparum and P. vivax infection rates in the studies villages in East Sepik Province. Understanding the extent of local heterogeneity in malaria transmission and the driving factors is critical to identify and implement targeted control strategies to ensure the ongoing success of malaria control in PNG and inform the development of tools required to achieve elimination. In household-based interventions, diagnostics with a sensitivity similar to (expert) microscopy could be used to identify and target high rate households
In vivo tissue uptake of intravenously injected water soluble all-trans β-carotene used as a food colorant
Water soluble β-carotene (WS-BC) is a carotenoid form that has been developed as a food colorant. WS-BC is known to contain 10% of all-trans β-carotene (AT-BC). The aim of the present study was to investigate in vivo tissue uptake of AT-BC after the administration of WS-BC into rats. Seven-week-old male rats were administered 20 mg of WS-BC dissolved in saline by intravenous injection into the tail vein. At 0, 6, 24, 72, 120 and 168 hours (n = 7/time), blood was drawn and liver, lungs, adrenal glands, kidneys and testes were dissected. The levels of AT-BC in the plasma and dissected tissues were quantified with HPLC. After intravenous administration, AT-BC level in plasma first increased up to 6 h and returned to normal at 72 h. In the testes, the AT-BC level first increased up to 24 h and then did not decrease but was retained up to 168 h. In the other tissues, the level first increased up to 6 h and then decreased from 6 to 120 or 168 h but did not return to normal. The accumulation of WS-BC in testes but not in the other 5 tissues examined may suggest that AT-BC was excreted or metabolized in these tissues but not in testes. Although WS-BC is commonly used as a food colorant, its effects on body tissues are still not clarified. Results of the present study suggest that further investigations are required to elucidate effects of WS-BC on various body tissues
Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial
© 2014 Laman et al. Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5–5 y.An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI -3.0% to 8.4%] versus -5.0% non-inferiority margin, p?=?0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%–87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing.Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania.Australian New Zealand Clinical Trials Registry ACTRN12610000913077.Please see later in the article for the Editors' Summary
Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles
Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size
- …