18 research outputs found

    Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin

    Get PDF
    The application of numerical models to understand the behavioural pattern of a flood is widely found in the literature. However, the selection of an appropriate hydraulic model is highly essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the two most important outcomes of flood simulations to stakeholders. Precise topographical data and channel geometries along a suitable hydraulic model are required to accurately predict floods. One-dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) has been widely used in all three forms for predicting flood characteristics. However, comparison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the better/best approach. Therefore, this research was carried out to identify the better approach using an example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were separately simulated and tested for their accuracy using observed inundations and satellite-based inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other models for the prediction of flows and inundation for both flood events. Therefore, the combined model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized.Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River BasinpublishedVersio

    Comparison of Calibration Approaches of the Soil and Water Assessment Tool (SWAT) Model in a Tropical Watershed

    Get PDF
    Hydrologic models are indispensable tools for water resource planning and management. Accurate model predictions are critical for better water resource development and management decisions. Single-site model calibration and calibrating a watershed model at the watershed outlet are commonly adopted strategies. In the present study, for the first time, a multi-site calibration for the Soil and Water Assessment Tool (SWAT) in the Kelani River Basin with a catchment area of about 2340 km2 was carried out. The SWAT model was calibrated at five streamflow gauging stations, Deraniyagala, Kithulgala, Holombuwa, Glencourse, and Hanwella, with drainage areas of 183, 383, 155, 1463, and 1782 km2, respectively, using three distinct calibration strategies. These strategies were, utilizing (1) data from downstream and (2) data from upstream, both categorized here as single-site calibration, and (3) data from downstream and upstream (multi-site calibration). Considering the performance of the model during the calibration period, which was examined using the statistical indices R2 and NSE, the model performance at Holombuwa was upgraded from “good” to “very good” with the multi-site calibration technique. Simultaneously, the PBIAS at Hanwella and Kithulgala improved from “unsatisfactory” to “satisfactory” and “satisfactory” to “good” model performance, while the RSR improved from “good” to “very good” model performance at Deraniyagala, indicating the innovative multi-site calibration approach demonstrated a significant improvement in the results. Hence, this study will provide valuable insights for hydrological modelers to determine the most appropriate calibration strategy for their large-scale watersheds, considering the spatial variation of the watershed characteristics, thereby reducing the uncertainty in hydrologic predictions.publishedVersio

    Analysis of Meandering River Morphodynamics Using Satellite Remote Sensing Data—An Application in the Lower Deduru Oya (River), Sri Lanka

    Get PDF
    River meandering and anabranching have become major problems in many large rivers that carry significant amounts of sediment worldwide. The morphodynamics of these rivers are complex due to the temporal variation of flows. However, the availability of remote sensing data and geographic information systems (GISs) provides the opportunity to analyze the morphological changes in river systems both quantitatively and qualitatively. The present study investigated the temporal changes in the river morphology of the Deduru Oya (river) in Sri Lanka, which is a meandering river. The study covered a period of 32 years (1989 to 2021), using Landsat satellite data and the QGIS platform. Cloud-free Landsat 5 and Landsat 8 satellite images were extracted and processed to extract the river mask. The centerline of the river was generated using the extracted river mask, with the support of semi-automated digitizing software (WebPlotDigitizer). Freely available QGIS was used to investigate the temporal variation of river migration. The results of the study demonstrated that, over the past three decades, both the bend curvatures and the river migration rates of the meandering bends have generally increased with time. In addition, it was found that a higher number of meandering bends could be observed in the lower (most downstream) and the middle parts of the selected river segment. The current analysis indicates that the Deduru Oya has undergone considerable changes in its curvature and migration rates.publishedVersio

    Performances of holiday climate index (HCI) for urban and beach destinations in Sri Lanka under changing climate

    Get PDF
    Climate change has had a significant impact on the tourism industry in many countries, leading to changes in policies and adaptations to attract more visitors. However, there are few studies on the effects of climate change on Sri Lanka’s tourism industry and income, despite its importance as a destination for tourists. A study was conducted to analyze the holiday climate index (HCI) for Sri Lanka’s urban and beach destinations to address this gap. The analysis covered historical years (2010–2018) and forecasted climatic scenarios (2021–2050 and 2071–2100), and the results were presented as colored maps to highlight the importance of HCI scores. Visual analysis showed some correlation between HCI scores and tourist arrivals, but the result of the overall correlation analysis was not significant. However, a country-specific correlation analysis revealed interesting findings, indicating that the changing climate can be considered among other factors that impact tourist arrivals. The research proposes that authorities assess the outcomes of the study and conduct further research to develop adaptive plans for Sri Lanka’s future tourism industry. The study also investigated potential scenarios for beach and urban destinations under two climate scenarios (RCP 4.5 and RCP 8.5) for the near and far future, presenting the findings to tourism industry stakeholders for any necessary policy changes. As Sri Lanka expects more Chinese visitors in the future due to ongoing development projects, this study could be valuable for policymakers and industry stakeholders when adapting to changing climate and future tourist behavior. While more research is needed to fully understand the effects of climate change on Sri Lanka’s tourism industry, this study serves as a starting point for future investigations

    Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin

    No full text
    The application of numerical models to understand the behavioural pattern of a flood is widely found in the literature. However, the selection of an appropriate hydraulic model is highly essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the two most important outcomes of flood simulations to stakeholders. Precise topographical data and channel geometries along a suitable hydraulic model are required to accurately predict floods. One-dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) has been widely used in all three forms for predicting flood characteristics. However, comparison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the better/best approach. Therefore, this research was carried out to identify the better approach using an example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were separately simulated and tested for their accuracy using observed inundations and satellite-based inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other models for the prediction of flows and inundation for both flood events. Therefore, the combined model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized

    Planform Changes in the Lower Mahaweli River, Sri Lanka Using Landsat Satellite Data

    Get PDF
    Major development projects along rivers, like reservoirs and other hydraulic structures, have changed not only river discharges but also sediment transport. Thus, changes in river planforms can be observed in such rivers. In addition, river centerline migrations can be witnessed. The Mahaweli River is the longest in Sri Lanka, having the largest catchment area among the 103 major river basins in the country. The river has been subjected to many development projects over the last 50 years, causing significant changes in the river discharge and sediment transport. However, no research has been carried out to evaluate the temporal and spatial changes in planforms. The current seeks to qualitatively analyze the river planform changes of the Lower Mahaweli River (downstream to Damanewewa) over the past 30 years (from 1991 to 2021) and identify the major planform features and their spatiotemporal changes in the lower Mahaweli River. Analyzing the changes in rivers requires long-term data with high spatial resolution. Therefore, in this research, remotely sensed Landsat satellite data were used to analyze the planform changes of Lower Mahaweli River with a considerably high resolution (30 m). These Landsat satellite images were processed and analyzed using the QGIS mapping tool and a semi-automated digitizing tool. The results show that major changes in river Mahaweli occurred mainly in the most downstream sections of the selected river segment. Further, the river curvature was also comparatively high downstream of the river. An oxbow lake formation was observed over time in the most downstream part of the Mahaweli River after 2011. Centerline migration rates were also calculated with the generated river centerlines. It was found that the rates were generally lower than about 30 m per year, except for at locations where river meandering was observed. The main limitations of this study were the possible misclassifications due to the resolution of images and obstructions caused by cloud cover in the Landsat images. To achieve more accurate estimates, this study could be developed further with quantitative mathematical analysis by also considering the sediment dynamics of the Mahaweli River.publishedVersio

    Impact of Climate Change and Variability on Spatiotemporal Variation of Forest Cover; World Heritage Sinharaja Rainforest, Sri Lanka

    No full text
    Rainforests are continuously threatened by various anthropogenic activities. In addition, the ever-changing climate severely impacts the world’s rainforest cover. The consequences of these are paid back to human at a higher cost. Nevertheless, little or no significant attention was broadly given to this critical environmental issue. The World Heritage Sinharaja Rainforest in Sri Lanka is originating news on its forest cover due to human activities and changing climates. The scientific analysis is yet to be presented on the related issues. Therefore, this paper presents a comprehensive study on the possible impact on the Sinharaja Rainforest due to changing climate. Landsat images with measured rainfall data for 30 years were assessed and the relationships are presented. Results showcased that the built-up areas have drastically been increased over the last decade in the vicinity and the declared forest area. The authorities found the issues are serious and a sensitive task to negotiate in conserving the forest. The rainfall around the forest area has not shown significant trends over the years. Therefore, the health of forest cover was not severely impacted. Nevertheless, six cleared-up areas were found inside the Singaraja Rainforest under no human interactions. This can be due to a possible influence from the changing climate. This was justified by the temporal variation of Land Surface Temperature (LST) assessments over these six cleared-up areas. Therefore, the World Heritage rainforest is threatened due to human activities and under the changing climate change. Hence, the conservation of the Sinharaja Rainforest would be challenging in the future.publishedVersio

    Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin

    No full text
    The application of numerical models to understand the behavioural pattern of a flood is widely found in the literature. However, the selection of an appropriate hydraulic model is highly essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the two most important outcomes of flood simulations to stakeholders. Precise topographical data and channel geometries along a suitable hydraulic model are required to accurately predict floods. One-dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) has been widely used in all three forms for predicting flood characteristics. However, comparison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the better/best approach. Therefore, this research was carried out to identify the better approach using an example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were separately simulated and tested for their accuracy using observed inundations and satellite-based inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other models for the prediction of flows and inundation for both flood events. Therefore, the combined model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized

    Impact of Climate Change and Variability on Spatiotemporal Variation of Forest Cover; World Heritage Sinharaja Rainforest, Sri Lanka

    Get PDF
    Rainforests are continuously threatened by various anthropogenic activities. In addition, the ever-changing climate severely impacts the world’s rainforest cover. The consequences of these are paid back to human at a higher cost. Nevertheless, little or no significant attention was broadly given to this critical environmental issue. The World Heritage Sinharaja Rainforest in Sri Lanka is originating news on its forest cover due to human activities and changing climates. The scientific analysis is yet to be presented on the related issues. Therefore, this paper presents a comprehensive study on the possible impact on the Sinharaja Rainforest due to changing climate. Landsat images with measured rainfall data for 30 years were assessed and the relationships are presented. Results showcased that the built-up areas have drastically been increased over the last decade in the vicinity and the declared forest area. The authorities found the issues are serious and a sensitive task to negotiate in conserving the forest. The rainfall around the forest area has not shown significant trends over the years. Therefore, the health of forest cover was not severely impacted. Nevertheless, six cleared-up areas were found inside the Singaraja Rainforest under no human interactions. This can be due to a possible influence from the changing climate. This was justified by the temporal variation of Land Surface Temperature (LST) assessments over these six cleared-up areas. Therefore, the World Heritage rainforest is threatened due to human activities and under the changing climate change. Hence, the conservation of the Sinharaja Rainforest would be challenging in the future

    Analysis of Multi-Temporal Shoreline Changes Due to a Harbor Using Remote Sensing Data and GIS Techniques

    Get PDF
    Coastal landforms are continuously shaped by natural and human-induced forces, exacerbating the associated coastal hazards and risks. Changes in the shoreline are a critical concern for sustainable coastal zone management. However, a limited amount of research has been carried out on the coastal belt of Sri Lanka. Thus, this study investigates the spatiotemporal evolution of the shoreline dynamics on the Oluvil coastline in the Ampara district in Sri Lanka for a two-decade period from 1991 to 2021, where the economically significant Oluvil Harbor exists by utilizing remote sensing and geographic information system (GIS) techniques. Shorelines for each year were delineated using Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager images. The Normalized Difference Water Index (NDWI) was applied as a spectral value index approach to differentiate land masses from water bodies. Subsequently, the Digital Shoreline Analysis System (DSAS) tool was used to assess shoreline changes, including Shoreline Change Envelope (SCE), Net Shoreline Movement (NSM), End Point Rate (EPR), and Linear Regression Rate (LRR). The results reveal that the Oluvil coast has undergone both accretion and erosion over the years, primarily due to harbor construction. The highest SCE values were calculated within the Oluvil harbor region, reaching 523.8 m. The highest NSM ranges were recorded as −317.1 to −81.3 m in the Oluvil area and 156.3–317.5 m in the harbor and its closest point in the southern direction. The maximum rate of EPR was observed to range from 3 m/year to 10.7 m/year towards the south of the harbor, and from −10.7 m/year to −3.0 m/year towards the north of the harbor. The results of the LRR analysis revealed that the rates of erosion anomaly range from −3 m/year to −10 m/year towards the north of the harbor, while the beach advances at a rate of 3 m/year to 14.3 m/year towards the south of the harbor. The study area has undergone erosion of 40 ha and accretion of 84.44 ha. These findings can serve as valuable input data for sustainable coastal zone management along the Oluvil coast in Sri Lanka, safeguarding the coastal habitats by mitigating further anthropogenic vulnerabilities
    corecore