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Abstract: Hydrologic models are indispensable tools for water resource planning and management.
Accurate model predictions are critical for better water resource development and management
decisions. Single-site model calibration and calibrating a watershed model at the watershed outlet
are commonly adopted strategies. In the present study, for the first time, a multi-site calibration
for the Soil and Water Assessment Tool (SWAT) in the Kelani River Basin with a catchment area
of about 2340 km2 was carried out. The SWAT model was calibrated at five streamflow gauging
stations, Deraniyagala, Kithulgala, Holombuwa, Glencourse, and Hanwella, with drainage areas
of 183, 383, 155, 1463, and 1782 km2, respectively, using three distinct calibration strategies. These
strategies were, utilizing (1) data from downstream and (2) data from upstream, both categorized
here as single-site calibration, and (3) data from downstream and upstream (multi-site calibration).
Considering the performance of the model during the calibration period, which was examined
using the statistical indices R2 and NSE, the model performance at Holombuwa was upgraded
from “good” to “very good” with the multi-site calibration technique. Simultaneously, the PBIAS
at Hanwella and Kithulgala improved from “unsatisfactory” to “satisfactory” and “satisfactory” to
“good” model performance, while the RSR improved from “good” to “very good” model performance
at Deraniyagala, indicating the innovative multi-site calibration approach demonstrated a significant
improvement in the results. Hence, this study will provide valuable insights for hydrological
modelers to determine the most appropriate calibration strategy for their large-scale watersheds,
considering the spatial variation of the watershed characteristics, thereby reducing the uncertainty in
hydrologic predictions.

Keywords: Kelani River Basin (KRB); land use land cover (LULC); multi-site calibration; single-site
calibration; SWAT

1. Introduction

Hydrologic models are one of the most effective and widely accessible tools in water
resource engineering and management. The introduction of computer science and its at-
tributes to water resources engineering has paved the way for many computational models
for hydrological studies. The Soil and Water Assessment Tool (SWAT) [1], HBV-light [2],
and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) [3] are to
name a few. To obtain accurate predictions from hydrologic models, these should be appro-
priately calibrated, representing the specific watershed characteristics. It is acknowledged
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that the calibration of a model depends on the modeler’s expertise and proper knowledge
of the watershed [4]. Numerous studies conducted around the world in the past have con-
centrated on single-site or watershed outlet calibration [5–8]. However, it is recommended
to conduct a multi-gauge calibration approach when it comes to larger river basins. Thus,
it allows the authors to consider the spatial variation of the watershed characteristics and
reduce the uncertainty in hydrologic predictions [9–11]. The most common approach to
calibrating a hydrologic model is comparing observed and simulated streamflow, thereby
adjusting the parameters through a trial-and-error approach.

Recently, several automatic calibration tools were introduced to hydrologic models;
therefore, the computational difficulty in manual calibration has been significantly re-
duced [12]. Although the automated calibration techniques are less time-consuming, the
parameters obtained through the automatic calibration process are often unrealistic. This
means that, although some sensitive parameters can be measured directly, others can only
be determined through calibration. For instance, automated calibration tools calibrate
parameters that require field measurements (i.e., hydraulic conductivity). This issue has
been widely discussed and has been raised by several researchers [13–21].

Many studies have attempted to evaluate multi-site calibration in different regions [22–28].
It is found that the multi-site calibration technique significantly enhances model per-
formance and provides significant parameter freedom compared to single-site calibra-
tion [29,30]. Therefore, the multi-site calibration of the semi-distributed physically based
SWAT model has been explored in multiple studies worldwide, considering both manual
and automatic calibration methods [22,25,28,31–34]. Several research studies have focused
on adopting different ways of calibrating hydrologic models. Some of these approaches
were calibration (1) utilizing upstream data from the watershed, (2) utilizing downstream
data from the watershed, (3) utilizing downstream and upstream data from the watershed
(multi-site calibration), and (4) utilizing upstream data first, followed by downstream data
from the watershed to calibrate the hydrologic model.

The application of such models is limited in the context of Sri Lanka. Several re-
searchers have attempted to simulate streamflow using HEC-HMS and SWAT hydrologic
models in the Kelani River Basin (KRB) [35–38]. Most of these studies did not focus on
presenting water balance components and calibrated values of parameters. Among them,
some were only focused on certain flood events, which limited the analysis to only a few
years. Therefore, these reasons make it difficult to identify the basin behavior through a
hydrologic model and calibration methodology. Moreover, the developed models through
these studies were calibrated only at the Hanwella gauging station (one of the downstream
gauging stations). Therefore, multi-site calibration of the Kelani River Basin is missing in
the literature. Hence, identifying this research gap, this study presents the first research
work to utilize all Kelani River streamflow stations.

In the present study, the SWAT model was calibrated using both single-site and multi-
site calibration strategies in the Kelani River Basin, Sri Lanka. The Kelani River Basin in
the western part of Sri Lanka drains an area of nearly 2340 km2, the third-largest river
basin in the country. According to the authors of this paper, the present study is the first
of its kind to conduct multi-site calibration in the Kelani River Basin and the context of
Sri Lanka. Hence, the results and outcomes of the present study will be helpful in the
process of calibrating a hydrologic model, specifically when several calibration points
are available in the watershed. Three scenarios of calibration were tested in this study.
They include using (1) data from downstream, (2) data from upstream, and (3) data from
downstream and upstream (multi-site calibration). Therefore, this study’s primary objective
is to comprehensively understand calibration methodologies and their effectiveness when
calibrating small to large river basins.
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2. Material and Methods
2.1. Study Area

The Kelani River Basin stretches for 145 km and starts from Adam’s Peak Mountains
in the island’s central hills. The focus basin in the present work extends approximately
2230 km2 (which is slightly lower than the total catchment area of the KRB) discharging
to the Indian Ocean in the Kelaniya area, a suburb in the Colombo District. Upstream of
the river basin is green with forest, whereas the land use in the downstream part mainly
comprises rubber plantations, homestead gardens, and built-up areas. The soil in the study
region inherits a loamy nature characterized by low infiltration rates [39].

Figure 1 presents the topography of KRB with the selected meteorological stations
(rain gauges and temperature gauges) and flow gauges. The river basin can be divided
topographically into upper and lower basins. The upper basin is located upstream of the
Hanwella River gauging station and spans approximately 1740 km2, while the lower basin
is located downstream of Hanwella and covers about 500 km2. The lower basin is heavily
urbanized, whereas the upper basin is mainly covered with dense vegetation such as tea,
rubber, coconut, and forest [40]. The river discharges vary from 800 to 1500 m3/s during
monsoon seasons, whereas it falls to 20 to 25 m3/s in the dry season, depending on the
operation of three reservoirs in the catchment [41].
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2.2. Soil and Water Assessment Tool (SWAT) Model

The Soil and Water Assessment Tool (SWAT) is a river basin model which was de-
veloped by the Agricultural Research Service (ARS) of the United States Department of
Agriculture (USDA). The model can be used to assess the temporal and spatial behavior of
flow situations in rivers. SWAT was initially used to analyze the impact of land uses and
land management strategies on water, sediment, and chemical yields in complex water-
sheds [42]. It helped to work on extended and long-term analysis. SWAT is widely used
globally and is considered an adaptable model that can incorporate a variety of environ-
mental processes to enhance more efficient watershed management and the formation of
more informed policy decisions [43]. SWAT divides a watershed into sub-watersheds, each
further subdivided into hydrologic response units (HRUs) comprised of land use, land
management, and soil characteristics [42]. Equation (A1) (in Appendix A) presents the
mathematical formulation of SWAT which is based on the water balance.
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2.3. SWAT Input Data
2.3.1. Digital Elevation Model (DEM)

The Kelani River Basin’s watershed boundaries, stream network, topography, and sub-
basins with sub-basin characteristics such as slope and slope length were defined using a
digital elevation model (DEM) with a 30 m resolution. The resolution of the DEM is a crucial
consideration when choosing a DEM for a SWAT model, as it has a considerable impact on
the total length of the streamline, the slope of the main channel, the watershed area, and
the delineation of the area slope. Buakhao and Kangrang [44] completed a comprehensive
analysis of this topic in the application of SWAT modeling and more information can be
found in the related reference.

2.3.2. Land-Use Land-Cover (LULC) Properties

The field observation data and high-resolution satellite images from Google Earth
were used to perform the land-use land-cover (LULC) classification. Landsat images with a
resolution of 30 m × 30 m were used for classification. The image (Satellite Name: Landsat 5,
Sensor ID: TM, Acquisition Date: 7 February 1997 and Path/Row: 141/055) retrieved from
the United States Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.
gov/ accessed on 5 September 2022) had a cloud cover of 8.0%. In order to categorize the
land into five distinct categories, the land-use classification system developed by the United
States Geological Survey (USGS) was used. More information on the USGS classification
system can be found in Anderson et al. [45].

Semi-automated classification plugin in QGIS 3.10 was used for the classification. QGIS
is considered one of the most common and globally accepted open-source GIS applications.
In addition, the training areas and pixel-based image classification were used to perform
supervised classification. More information on this open-source toolbox can be found in
Congedo [46]. Then, standard training samples were used to classify each land-use class
following Lillesand et al. [47]. In addition, the QGIS semi-automatic classification plugin
was utilized to evaluate land-cover classification accuracy. Stratified random points (a new
function in SCP 6.4.0) were used in the SCP function to generate Region of Interests (ROIs),
which were then photo-interpreted and used as a reference for the accuracy assessment. The
error matrix and estimated accuracy values were then developed by the SCP Accuracy tool.

There are a variety of approaches for determining the appropriate sample size and
distribution in these types of studies. As a general rule, random sampling is the most
effective method for ensuring low estimates of standard errors in accuracy. The proportions
of land cover classes and the standard errors that were anticipated for overall land cover
categorization and individual classes significantly impact the sample design. Class-specific
estimations can be improved by stratifying the sample. Olofsson et al. [48] provided further
information on sample size and stratification. The sample size (N) can be computed as per
Equation (1).

N =

(
∑
i=1

Wi × Si
S0

)2

(1)

where Wi is the class i area to total area (proportion); Si is the standard deviation of i
stratum; S0 is the standard deviation expected for overall accuracy.

2.3.3. Soil Properties

The soil properties of KRB were derived from the Food and Agriculture Organization
(FAO) and The United Nations Educational, Scientific and Cultural Organization (UNESCO)
soil maps. Four major soil types, loam, clay, and sandy soils (refer to Table 1) can be
identified as per the SWAT global soil database.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Hydrology 2022, 9, 183 5 of 21

Table 1. Soil classification and description.

Soil Name Texture Hydrological Soil Group Area (km2)

Ao73-2bc-3645 Loam C 1810.7
Ap19-2b-3654 Loam C 467.2
Qc50-1a-3841 Sandy Loam C 41.4
Bf12-3bc- 3687 Clay Loam C 15.5

The soil map for the KRB is given in Figure 2. The spatial variation of soil types can be
clearly seen in this figure. The upstream of the KRB mostly has Ao73-2bc-3645 soil whereas
the downstream has both clay and sandy loam soils.

Hydrology 2022, 9, x FOR PEER REVIEW 5 of 22 
 

 

2.3.3. Soil Properties 
The soil properties of KRB were derived from the Food and Agriculture Organization 

(FAO) and The United Nations Educational, Scientific and Cultural Organiza-
tion (UNESCO) soil maps. Four major soil types, loam, clay, and sandy soils (refer to Table 
1) can be identified as per the SWAT global soil database. 

Table 1. Soil classification and description. 

Soil Name Texture Hydrological Soil Group Area (km2) 
Ao73-2bc-3645 Loam C 1810.7 
Ap19-2b-3654 Loam C 467.2 
Qc50-1a-3841 Sandy Loam C 41.4 
Bf12-3bc- 3687 Clay Loam C 15.5 

The soil map for the KRB is given in Figure 2. The spatial variation of soil types can 
be clearly seen in this figure. The upstream of the KRB mostly has Ao73-2bc-3645 soil 
whereas the downstream has both clay and sandy loam soils. 

 
Figure 2. Soil map of the Kelani River Basin. 

2.3.4. Meteorological and Hydrological Data 

Daily resolution meteorological data of rainfall, minimum and maximum tempera-
ture, relative humidity, solar radiation, and wind speed data have to be fed to the SWAT 
model. These data can either be ground measured or generated by the SWAT WXGEN 
weather generator. This weather generator helps to fill the gaps in ground-measured data 
[49]. Sri Lanka has widespread rainfall measuring stations; however, it only has a few 
temperature and other meteorological data measuring stations (less than 25 for the whole 
country). Therefore, observed rainfall and temperature data were used in modeling; how-
ever, due to lack of measured data, the relative humidity, wind speed, and solar radiation 
data from 1994 to 2015 were generated. The daily rainfall data of Laxapana, Hanwella, 
Wewalthalawa, Norwood, Kitulgala, Holombuwa, Deraniyagala, Glencourse, and An-
goda, and temperature data of Colombo, Katunayake, and Rathnapura were purchased 
from the Department of Meteorology, Sri Lanka, from 1994 to 2015. These gauging stations 
are shown in Figure 1. In addition, daily discharge data for five flow stations, including 

Figure 2. Soil map of the Kelani River Basin.

2.3.4. Meteorological and Hydrological Data

Daily resolution meteorological data of rainfall, minimum and maximum temperature,
relative humidity, solar radiation, and wind speed data have to be fed to the SWAT model.
These data can either be ground measured or generated by the SWAT WXGEN weather
generator. This weather generator helps to fill the gaps in ground-measured data [49]. Sri
Lanka has widespread rainfall measuring stations; however, it only has a few temperature
and other meteorological data measuring stations (less than 25 for the whole country).
Therefore, observed rainfall and temperature data were used in modeling; however, due to
lack of measured data, the relative humidity, wind speed, and solar radiation data from
1994 to 2015 were generated. The daily rainfall data of Laxapana, Hanwella, Wewalthalawa,
Norwood, Kitulgala, Holombuwa, Deraniyagala, Glencourse, and Angoda, and tempera-
ture data of Colombo, Katunayake, and Rathnapura were purchased from the Department
of Meteorology, Sri Lanka, from 1994 to 2015. These gauging stations are shown in Figure 1.
In addition, daily discharge data for five flow stations, including Hanwella, Glencourse,
Kitulgala, Holombuwa, and Deraniyagala, were purchased from the Department of Irriga-
tion, Sri Lanka. These data were used to conduct the sensitivity analysis first and then to
calibrated and validate the SWAT model.

2.4. Detailed Analysis
2.4.1. Watershed Delineation and Hydrological Response Units (HRUs)

This study used ArcGIS 10.4.1 and the 2012 version of SWAT (which can be down-
loaded from http://swat.tamu.edu/software/ accessed on 5 September 2022) computer

http://swat.tamu.edu/software/
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modules for in-depth analysis. Initially, the input raster files (DEM, soil map, and LULC
map) were all projected into the same geographic coordinate system (i.e., UTM zone 44N
for Sri Lanka). Generally, the watershed delineation procedure consists of establishing
a DEM, defining streams, inlets, and outlets, and calculating sub-basin parameters. The
in-stream definitions process was not defined correctly by the ArcSWAT model and was
not delineated through the Glencourse flow station. To address the issue with stream defi-
nitions, this study used the SAGA tool combined with the open street map (OSM) plugin
in QGIS 3.10. The stream was burned to ArcSWAT after the river network was derived by
identifying the Strahler order. A catchment boundary with a total area of 2239.5 km2 was
recognized by the model.

This KRB was subdivided into seven sub-basins with manually added outlets. After
that, the land area of each sub-basin was split into hydrological response units (HRUs).
Fifty-three HRUs were identified. The slope map, soil layers, and LULC were imported
into the project using ArcSWAT’s HRU analysis tool. Thus, the land use and soil layers
have completely enclosed the delineated watershed. In addition to land use and soils,
SWAT HRU analyses have included classifications of HRUs by slope classes; therefore, the
multiple slope option was selected. After reclassifying the LULC, slope, and soil maps to
correspond with SWAT database values, these physical attributes were overlaid to define
the HRUs. In this study, the threshold values of 15%, 5%, and 5% were specified for land
use, slope, and soil, respectively, for analysis.

2.4.2. Parameter Selection

The SWAT flow simulation was performed with monthly frequency after processing
the required inputs from 1994 to 2015. The initial three years (1994 to 1996) were allo-
cated to warm up the model. The SWAT model was performed with the default SWAT
parameters during the simulation. Relevant SWAT parameters, including the baseflow
alpha-factor (ALPHA BF.gw), the minimum water level required for the formation of base-
flow (GWQMN.gw), the time needed for water to reach the shallow aquifer after leaving
the root zone (GW DELAY.gw), the groundwater re-evaporation coefficient (GW_REVAP),
the curve number (CN2.mgt), the threshold depth at which water can percolate from the
shallow aquifer into the deeper aquifer (REVAPMN), the compensation factor for the soil
evaporation (ESCO.hru), and the maximum canopy water storage (CANMX.hru) were
selected by the literature and visual observations of both observed and simulated hydro-
graphs. Overestimations, underestimations, and deviations in the discharge graphs were
highlighted.

Before the manual calibration, a SWAT-CUP analysis was carried out to identify the
most sensitive parameters. SWAT-CUP is an independent program designed for SWAT
calibration [50]. Five distinct calibration processes (Particle Swarm Optimization (PSO),
Markov Chain Monte Carlo (MCMC), Sequential Uncertainty Fitting ver.2 (SUFI-2), Gen-
eralized Likelihood Uncertainty Estimation (GLUE), and Parameter Solution (Parasol))
are included in the program, as well as functions for validation and sensitivity analysis
and a Bing map visualization of the study area. As part of the SWAT-CUP analysis, this
study adopted the Latin Hypercube Sampling technique from the SUFI-2 to calibrate and
estimate uncertainty [50,51]. The SUFI-2 algorithm is the most common and computation-
ally efficient method, having the best P-factor (prediction uncertainty ranges) and R-factor
(relative coverage of measurements) compared to other methods [38,52–54].

2.4.3. Calibration and Validation

Calibration optimizes the model output by modifying or adjusting the model parame-
ters within the allowed limits to correspond with the observed data. The values of these
parameters can be altered either manually or automatically so that the predicted results are
in close enough accordance with the observed data. In this study, the SWAT model was
manually calibrated for twelve years (1997–2008) and validated for seven years (2009–2015),
with three years serving as a warmup period (1994–1996).
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Even though there were seven outlets in the basin, only five were considered for the
analysis. The fourth outlet, Nagalagam Street, is the closest outlet to the sea and is therefore
subject to tides [54]. Consequently, it was not possible to observe or simulate the discharge,
and outlet number 4 cannot be used (fourth sub-basin). In addition, the discharge data
from Norwood (outlet 7) were inadequate for the analysis. The remaining outlets (refer to
Figure 3) were calibrated and validated. The research included two calibration methods,
single-site calibration and multi-site calibration.
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In single-site calibration, the authors used the upstream station (Deraniyagala) and
the downstream station (Hanwella) and calibrated each case independently. The resulting
sub-basin parameter values were then assigned to the remaining four sub-basins. Multi-site
calibration was accomplished by calibrating from the upstream to the downstream river
while holding identical values for each sub-basin.

2.4.4. Performance Evaluation of the Model

The performance of the model was evaluated using statistical indices such as the
Nash–Sutcliffe model efficiency (NSE), the RMSE-observations standard deviation ratio
(RSR), the percentage of bias (PBIAS), and the coefficient of determination (R2) (find the
equations and definitions in Appendix B). The R2 ranges between 0 and 1 and measures
the model’s ability to explain the variance of observed data. The greater the number,
the lower the error variance of the model, and vice-versa for lower numbers. Generally,
R2 > 0.5 is considered the acceptable range for a model [55,56]. The mathematical formula-
tion for R2 is given in Equation (A2).

The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that evaluates the amount
of residual variance relative to the variance of observed data and reflects the fit between
simulated and observed data plots [57]. While Servat and Dezetter [58] state that the
NSE is the best objective function to reflect the overall fit of a hydrograph, Legates and
McCabe Jr [59] recommend using the NSE. When it is set to 1, the output is optimal. In
general, models with an NSE of at least 0.5 are considered to be in acceptable form. The
mathematical formulation of the NSE is given in Equation (A3).

Based on the recommendations of Singh et al. [60], the RMSE-observations standard
deviation ratio (RSR) is computed as the ratio between the RMSE and the standard deviation
of measured data. Root-mean-squared error (RMSE) is one of the most often employed



Hydrology 2022, 9, 183 8 of 21

error-index statistics [60,61]. Error-index statistics and a scaling/normalization factor make
it possible to apply the final statistic and reported values to various constituents. With an
RSR value between 0 and ∞, which shows 0 RMSE or residual variation and thus perfect
model simulation, the RSR spans from 0 to a significant positive value. This produces
a low RSR and decreased RMSE, which in turn improves model simulation outcomes.
Equation (A4) presents the mathematical formulations of the RMSE-observation standard
deviation ratio.

The percent bias (PBIAS) measures the average tendency of simulated data to differ
from their observed counterparts in terms of percentage (refer to Equation (A5)). For
example, a model with a negative PBIAS indicates overestimation, whereas a positive
PBIAS indicates underestimating. PBIAS is frequently used to measure water balance
errors and has the capability to reveal poor model performance [62]. During dry seasons,
PBIAS values for streamflow tend to vary more among different autocalibration methods
than in wet seasons [62].

Table 2 presents the summary of performance evaluation values for monthly discharge
simulations, which were recommended by many researchers.

Table 2. Model performance evaluations for monthly discharge simulation [63–65].

Indices R2 NSE RSR PBIAS

Range 0 to 1 −∞ to 1 0 −∞ to ∞
Optimal Value 1 1 0 0

Satisfactory Value >0.5 >0.5 ≤0.7 <±25

3. Results and Discussion
3.1. Land-Use Land-Cover Classification

The classification accuracy was examined using the Kappa coefficient and was above
81%, while the overall classification accuracy was over 84%, suggesting that the classi-
fication was acceptable for the analysis. Forest land area (1875.8 km2) was the highest
in 1997, while the water bodies (16.9 km2) acquired a small percentage of the area in the
Kelani River Basin. However, agricultural lands shared a significant percentage while more
settlements can be seen downstream of the KRB. Figure 4 showcases the land use land
cover for KRB in 1997. Other assessed land cover is given in Table 3 with their areas.
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Table 3. Land-use classes in Kelani River Basin (in 1997) and corresponding SWAT codes.

Land Use
SWAT Land-Use Class

Area (km2)
Model Code Description

Settlements URBN Urban 91.3
Agriculture AGRL Agricultural Land-Generic 302.3

Forest FRST Forest-Mixed 1875.8
Barren lands BARR Barren 38.6
Water bodies WATR Water 16.9

3.2. Single-Site Calibration and Validation
3.2.1. Hanwella Sub-Basin

Initially, the SWAT model was calibrated using downstream data (Hanwella sub-basin),
and the obtained values for the selected parameters were then assigned to other basins as
is customary with the single-site calibration technique. Figure 5 showcases the calibration
and validation of observed and simulated streamflows. The streamflow gauges Hanwella,
Deraniyagala, Glencorse, Holombuwa, and Kithulgala illustrate a good agreement between
observed and simulated streamflow data, highlighting a good performance of the model,
while slight overestimations are seen at Glencorse and Kithulgala stations and slight
underestimation can be observed during some of the months of 1997, 1998, 2010, and 2015
at Kithulgala station (refer to Figure 5c,e).

Throughout the calibration period, the model performances for Hanwella, Deraniya-
gala, and Holombuwa stations were deemed “good” with the indices RSR and NSE, values
of (0.6, 0.65), (0.52, 0.66), and (0.56, 0.72), respectively (refer to Table 4). In addition, the
PBIAS stayed less than ±10 at Deraniyagala and Holombuwa stations, and the model per-
formance was assessed as “very good”. However, the PBIAS ≥ 25 at Hanwella station was
classified as “unsatisfactory”. Although Kithulgala station shows a “satisfactory” condition
with a PBIAS value of (−20.35), the model performance at Glencorse and Kithulgala is
rated as “unsatisfactory” for all the statistical indices except R2. Overestimation of the
peak flows could be the reason for low NSE values at Glencorse and Kithulgala stations
because of the sensitivity of NSE to higher values resulting from squared differences in its
derivation. The R2 values ranged from 0.61 to 0.82, suggesting “very good” (0.75–0.89) to
“good” (0.50–0.74) performance of the model [66].

Table 4. Performance evaluations for the monthly discharge simulation (Hanwella sub-basin).

Station R2 NSE PBIAS RSR R2 NSE PBIAS RSR

Calibration Validation

Hanwella 0.82 0.65 −29.34 0.6 0.85 0.51 −43.94 0.75
Deraniyagala 0.69 0.66 −3.9 0.52 0.69 0.62 5.97 0.53
Glencorse 0.81 −0.96 -81.94 1.58 0.69 −0.17 −40.75 1.05

Holombuwa 0.73 0.72 −4.24 0.56 0.61 0.59 0.34 0.60
Kithulgala 0.61 −0.07 −20.35 1.05 0.7 0.59 −7.58 0.59

During the validation period, model performance was “satisfactory”, with NSE values
ranging from 0.51 to 0.62 for all stations except Glencorse (−0.17), which can be rated as
“unsatisfactory”. The PBIAS and RSR can be classified as “very good” and “good” for
Deraniyagala (5.97, 0.53), Holombuwa (0.34, 0.6), and Kithulgala (−7.58, 0.59), whereas
Hanwella (−43.94, 0.75) and Glencorse (−40.75, 1.01) are evaluated as “unsatisfactory”. R2

varies from 0.61 and 0.85, signifying “very good” (0.75–0.89) to “good” (0.50–0.74) model
performance. Table 5 showcases the model calibrated parameters for Hanwella sub-basin
and these values can be effectively used in any future study.
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Figure 5. Monthly simulated and observed streamflow discharge for calibration at Hanwella:
(a) Hanwella; (b) Deraniyagala; (c) Glencorse; (d) Holombuwa; (e) Kithulgala.

Table 5. SWAT model calibrated parameters (Hanwella sub-basin).

Parameter Description of the Parameter Fitted Min Max

ALPHA_BF.gw Alpha-factor of the baseflow in days 0.9998 0 1
GW_DELAY.gw Groundwater lag time in days 146.45 0 500

GWQMN.gw In a shallow aquifer, the threshold water
depth is needed for the return flow (mm) 325 0 5000

GW_REVAP Groundwater “revap” coefficient 0.1985 0.02 0.2

REVAPMN
The threshold depth at which water can

percolate from the shallow aquifer into the
deeper aquifer (mm)

175 0 500

CN2.mgt * Runoff curve number Varied 35 98
CANMX.hru Canopy water storage (maximum) (mm) 84.356 0 100

ESCO.hru Compensation factor of soil evaporation 0.985 0.01 1
* CN2.mgt values were varied with the land use (forest: 80, settlements: 90, agriculture: 80, water bodies: 92, bare
lands: 80).

3.2.2. Deraniyagala Sub-Basin

Figure 6 presents the calibration and validation results for the Deraniyagala sub-basin.
Similar to the initial single-site calibration approach, the simulated flow at Hanwella,
Deraniyagala, Glencorse, Holombuwa, and Kithulgala gauging stations showed a good fit
with observed data, with a slight overestimation of the flow at Glencorse and Kithulgala
for the majority of the years of the studied period (refer to Figure 6c,e).

In the calibration period, the model performances at Deraniyagala and Holombuwa
stations were graded as “good” based on the NSE and RSR indices (0.66, 0.56) and (0.69,
0.57), respectively. In addition, Hanwella (0.65, 0.64) was rated “good” for the NSE and
“satisfactory” for the RSR, while Kithulgala (−0.07, 1.06) was deemed “unsatisfactory” for
both indices (refer to Table 6). The PBIAS at Deraniyagala and Holombuwa stations did
not surpass ±10; hence they were assessed as “very good.” Hanwella and Kithulgala were
rated as “unsatisfactory” and “satisfactory” for the PBIAS, whereas Glencorse was rated as
“unsatisfactory” for all indices except R2, as is customary. R2 values ranged from 0.56 to
0.81, suggesting “very good (0.75–0.89)” to “good (0.50–0.74)” performance of the model.

The model performance for the validation period was “unsatisfactory” for the NSE,
PBIAS, and RSR indices at Hanwella (0.41, −51.41, 0.87) and Glencorse (−0.15, −41.99,
1.06) stations. However, the values of PBIAS for Deraniyagala (6.06), Holombuwa (0.06),
and Kithulgala (−7.96) stations were less than ±10, which indicates a “very good” model
performance. The NSE and RSR indices demonstrated “good” performance at the De-
raniyagala (0.68, 0.55) and “satisfactory” performance at the Kithulgala (0.55, 0.65) stations.
Holombuwa’s model performance with RSR was deemed “good”, whereas the NSE sug-
gests a “satisfactory” performance. R2 indicates that the model performance at all stations
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falls within the range of “very good” (0.75–0.89) to “good” (0.50–0.74). Detailed analyses
of these results are given in Table 6. Similar to the Hanwella sub-basin, Table 7 presents
the calibrated parameters for SWAT model for Deraniyagala sub-basin. These calibrated
values can be used in any future study.

Table 6. Performance evaluations for the monthly discharge simulation (Deraniyagala sub-basin).

Station R2 NSE PBIAS RSR R2 NSE PBIAS RSR

Calibration Validation

Hanwella 0.81 0.65 −29.26 0.64 0.84 0.41 −51.41 0.87
Deraniyagala 0.66 0.66 −4.77 0.56 0.69 0.68 6.06 0.55
Glencorse 0.8 −0.87 −81.89 1.58 0.66 −0.15 −41.99 1.06

Holombuwa 0.72 0.69 −3.16 0.57 0.58 0.57 0.06 0.6
Kithulgala 0.56 −0.07 −20.79 1.06 0.64 0.55 −7.96 0.62
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3.3. Multi-Site Calibration and Validation

Figure 7 presents the results for multi-site calibration and validation. In multi-site
calibration, an excellent fit was witnessed with the observed discharges for all the stations,
with a slight underestimation during the years 1997 to 1999, 2005 to 2006, 2010 to 2013,
and 2015, and an overestimation during the remaining years, except a few months at the
Kithulgala station and a slight overestimation at the Glencorse station, similar to the initial
single-site calibration approach (refer to Figure 7b,d).
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Table 7. SWAT model calibrated parameters (Deraniyagala sub-basin).

Parameter Description of the Parameter Fitted Min Max

ALPHA_BF.gw Alpha-factor of the baseflow in days 0.9998 0 1
GW_DELAY.gw Groundwater lag time in days 340 0 500

GWQMN.gw
In a shallow aquifer, the threshold

water depth is needed for the return
flow (mm)

320 0 5000

GW_REVAP Groundwater “revap” coefficient 0.1965 0.02 0.2

REVAPMN
The threshold depth at which water

can percolate from the shallow aquifer
into the deeper aquifer (mm)

180 0 500

CN2.mgt* Runoff curve number Varied 35 98

CANMX.hru Canopy water storage (maximum)
(mm) 84.356 0 100

ESCO.hru Compensation factor of soil
evaporation 0.985 0.01 1

* CN2.mgt values were varied with the land use (forest: 80, settlements: 90, agriculture: 80, water bodies: 92, bare
lands: 80).

The model performance for the Hanwella was assessed as “very good” based on the
R2 for both calibration and validation periods (refer to Table 8). The NSE and RSR indices
exhibited “good” performance of the model within the calibration period, whereas the
PBIAS was “satisfactory”. However, throughout the validation period, the PBIAS and
RSR evaluated the model performance in Hanwella as “unsatisfactory”, although the NSE
rated it as “satisfactory”. In addition, the Deraniyagala sub-basin outperformed all other
sub-basins, with all model performance indices falling within the range of “very good”
and “good” for both calibration and validation periods. Holomabuwa follows a similar
trend, except that the NSE graded the model’s performance as “satisfactory” during the
validation period.

Table 8. Performance evaluations for the monthly discharge simulation.

Station
R2 NSE PBIAS RSR R2 NSE PBIAS RSR

Calibration Validation

Hanwella 0.83 0.71 −23.67 0.53 0.82 0.51 −40.68 0.73
Deraniyagala 0.68 0.66 −4.34 0.50 0.70 0.66 5.77 0.51
Glencourse 0.81 −0.87 −72.75 1.41 0.69 −0.28 −34.16 0.99

Holombuwa 0.75 0.75 5.09 0.52 0.61 0.59 9.51 0.58
Kithulgala 0.59 −0.32 −13.51 1.17 0.69 0.50 −1.79 0.69

Furthermore, the model performance of Glencorse was graded as “unsatisfactory” by
all indices except R2, which indicated a “very good” and “good” model performance for
both calibration and validation, respectively. In the calibration period, model performance
for the Kithulgala sub-basin was assessed as “good” based on the the R2 and PBIAS indices.
However, during the validation period, model performance was rated as “good” for both
indices except the PBIAS, which increased to “very good” performance. NSE and RSR
ranked the model performance as “unsatisfactory” and “good” in calibration and validation
periods, respectively.

Table 9 presents the fitted values for SWAT calibrated values. As it was presented
under Tables 5 and 7, these calibrated values can be effectively used by any future study
for the same catchment.
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Figure 7. Monthly simulated and observed streamflow discharge for multi-site calibration: (a)
Deraniyagala; (b) Kithulgala; (c) Holombuwa; (d) Glencorse; (e) Hanwella.

Table 9. Fitted values for calibrated model parameters.

Parameter Name
Station

Hanwella Deraniyagala Glencourse Holombuwa Kithulgala

ALPHA_BF.gw 0.9998 0.9998 0.9998 0.9998 0.9998
GW_DELAY.gw 146.45 340 340 340 120

GWQMN.gw 325 320 320 320 320
GW_REVAP 0.1985 0.1965 0.1965 0.1965 0.1995
REVAPMN 175 180 180 180 175
CN2.mgt * Varied Varied Varied Varied Varied

CANMX.hru 84.356 84.356 84.356 84.356 99.356
ESCO.hru 0.985 0.985 0.005 0.485 0.005

* CN2.mgt values were varied with the land use (forest: 80, settlements: 90, agriculture: 80, water bodies: 92, bare
lands: 80).

3.4. Comparative Analysis

The average annual basin values from a single-site and multi-site calibration were
obtained for comparative analysis and shown in Table 10. Both single-site calibrations
showcase similar range values for average annual values. However, some significant
changes can also be seen (surface runoff, groundwater, etc.). This considerable difference
may result from the several calibration procedures with varying parameter values. For
instance, the GW DELAY.gw values (146.45 and 340) were altered during two calibration
operations, as illustrated in Tables 5 and 7, which can immediately impact the simulated
groundwater flow into the watershed’s stream. In addition, the multi-site calibration
values are approximately similar to calibration 1 (Hanwella gauging station) from single-
site calibration. They do not show much difference. Hanwella gauging station is far
downstream compared to the Deraniyagala gauging station, and this could be a reason for
having a slightly increased deviation from single-site calibration to multi-site calibration.

The hydrological features of a basin are represented by its annual mean values for both
calibration methods. The ratio between precipitation (P) and potential evapotranspiration
(Ep) reveals the moisture state, which reflects the climate condition of the region. By ana-
lyzing this ratio, the climate condition of the relevant study region may be identified, and it
may assist the authorities in determining whether the results of this study would accurately
reflect the actual setting of the basin. According to the National Oceanic and Atmospheric
Administration (NOAA), the relevant climate conditions and the ratio between P and Ep
are shown in Table 11.
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Table 10. Average annual basin values.

Variable Name Description
Single-Site Calibration Multi-Site

CalibrationCalibration 01 Calibration 02

Precip Watershed average precipitation
used in the simulation (mm) 3897.6 3897.6 3897.6

Surface Runoff Q Simulation-based surface runoff
generated in the watershed (mm) 1501.3 1080.1 1520.8

Lateral Soil Q
Simulated lateral flow contribution

to streamflow in the watershed
(mm)

130.7 179.6 131.9

Groundwater (Shal
Aq) Q

Simulated groundwater flow into
the watershed’s stream (mm)

(shallow)
664.7 1023.4 669.3

Groundwater (Deep
Aq) Q

Simulated groundwater flow into
the watershed’s stream (mm)

(deep)
51.7 70.4 48.3

Revap (Shal Aq =>
Soil/Plants)

Amount of water simulated to flow
from a shallow aquifer to the

watershed’s vegetation and soil
profile (mm)

318.1 313.7 249.1

Deep Aq Recharge Simulated deep aquifer recharging
in the watershed (mm) 51.7 70.4 48.4

Total Aq Recharge Calculated flow entering into both
watershed aquifers (mm) 1034.9 1407.6 967.4

Total Water Yld Simulated water yield from HRUs
in the watershed (mm) 2348.4 2353.6 2370.4

Percolation Out of
Soil

Simulated water percolation at the
soil profile’s base in the watershed

(mm)
1039.7 1412.4 968.9

ET Simulated evapotranspiration in
the watershed (mm) 1225.6 1225.1 1275

PET
Simulated potential

evapotranspiration in the
watershed (mm)

1611.4 1611.4 1611.4

Total Sediment
Loading

Simulated sediment yield from
HRUs in the watershed

(metric tons/ha)
111.4 138.2 141.6

Table 11. The ratio between the P and Ep and relevant climate conditions [67].

Precipitation/Potential Evapotranspiration (P/Ep) Climate Condition

<0.4 Arid
0.4–0.8 Semi-arid
0.8–1.2 Sub-humid

>1.2 Humid

This study indicates a P/Ep value of 2.4 corresponds to expected humid conditions,
given that the Kelani River Basin is a tropical watershed. This information is important for
validating the remaining hydrological features of the basin.

A few studies on SWAT models in Sri Lanka have been conducted [68–70]. Among
them, Siriwadana and Rajapakse [37] were the first to document SWAT model results in
the Kelani River Basin. The results of our study will guide water resource management
authorities in decision making with optimal data availability. Thus, the research work
presented herein creates the novelty of the work in the context not only in the KRB but
also in a country blessed with more than 100 rivers that are spread all over the country:
Sri Lanka.

The results of this analysis incorporate several uncertainties. According to Gunathilaka
and Samarasinghe [54,71], the backwater effect from tidal affects up to the Hanwella
gauge (which is in the upstream). This can alter the discharge of the river. Moreover, the
SWAT model has its own uncertainties. Since the model simulates watershed processes
through several assumptions, significant uncertainties are carried out through the model
simulation result.

4. Summary and Conclusions

This study evaluates the SWAT model calibration using three distinct calibration proce-
dures, including (1) single-site calibration with downstream data, (2) single-site calibration
with upstream data, and (3) multi-site calibration using downstream and upstream data
approach for the first time in the context of Sri Lanka. Calibration was performed using
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SWAT parameters, including the baseflow alpha-factor (ALPHA BF.gw), the minimum wa-
ter level required for the formation of baseflow (GWQMN.gw), the time needed for water
to reach the shallow aquifer after leaving the root zone (GW DELAY.gw), the groundwater
“re-evaporation” coefficient (GW_REVAP), the curve number (CN2.mgt), the threshold
water level in the shallow aquifer for “re-evaporation” to occur (REVAPMN), the maxi-
mum canopy water storage (CANMX.hru), and the soil evaporation compensation factor
(ESCO.hru). These parameters were selected by the literature and visual observations of
both simulated and observed hydrographs.

The performance of the model was evaluated using statistical indices, including
coefficient of determination (R2), the Nash–Sutcliffe model efficiency (NSE), the RMSE
observed standard deviation ratio (RSR), and the percentage of bias (PBIAS). These are the
most prevalent statistical indices in the literature for evaluating SWAT model performance.
The results indicate a satisfactory fit between these calibration approaches (single and
multi-site calibration) and the observed data, with a notable improvement in the multi-
site calibration strategy compared to the other two methods. The study concluded that,
although the multi-site calibration strategy requires a considerable amount of time, the
accuracy of the results can be improved with this method, and it will allow the hydrological
modelers to consider the spatial variation of the watershed characteristics and reduce the
uncertainty in hydrologic predictions.
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Appendix A. Water Balance Equation

SWti = SW0 +
t

∑
i=1

(
Rdayi

− Qsur fi
− Eai − Wseepi − Qgwi

)
(A1)

where SWti is the ultimate water content (mm) at the time t, SW0 is the initial water
content of the soil (mm), t is the duration of the simulation (days), Rdayi

is the amount of
precipitation recorded on the ith day (mm), Qsur fi

is the amount of surface runoff recorded
on the ith day (mm), Eai is the amount of evapotranspiration recorded on the ith day (mm),
Wseepi is the infiltration into the vadose zone on the ith day from the soil profile (mm), and
Qgwi is the amount of baseflow recorded on the ith day (mm).

Appendix B. Statistical Indices Utilized for Model Performance Evaluation

R2 =

[
∑i
(
Qm,i − Qm

)(
Qs,i − Qs

)]2
∑i
(
Qm,i − Qm

)2
∑i
(
Qs,i − Qs

)2 (A2)

NSE = 1 − ∑i(Qm − Qs)
2
i

∑i
(
Qm,i − Qm

)2 (A3)
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RSR =
∑n

i=1(Qm − Qs)
2
i

∑n
i=1
(
Qm,i − Qm

)2 (A4)

PBIAS = 100 × ∑n
i=1(Qm − Qs)i

∑n
i=1 Qm,i

(A5)

Here, Q represents a variable (e.g., discharge) and s, m subscripts represent the
simulated value and the measured value. Therefore, Qm is the mean measured data and
Qs is the mean simulated data. In addition, i describes the ith measured or simulated data
while n represents the total number of measured or simulated data.
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