13 research outputs found
Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
MAGIS-100 is a next-generation quantum sensor under construction at Fermilab
that aims to explore fundamental physics with atom interferometry over a
100-meter baseline. This novel detector will search for ultralight dark matter,
test quantum mechanics in new regimes, and serve as a technology pathfinder for
future gravitational wave detectors in a previously unexplored frequency band.
It combines techniques demonstrated in state-of-the-art 10-meter-scale atom
interferometers with the latest technological advances of the world's best
atomic clocks. MAGIS-100 will provide a development platform for a future
kilometer-scale detector that would be sufficiently sensitive to detect
gravitational waves from known sources. Here we present the science case for
the MAGIS concept, review the operating principles of the detector, describe
the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure
A New Way to Link Development to Institutions, Policies and Geography
The paper aims to examine the role of institutions relative to economic policy and geography in explaining the differential level of development across countries over time. To that end, it attempts to construct a Development Quality Index (DQI) and an Institutional Quality Index (IQI) by using multivariate statistical method of principal components. It shows that (i) higher level of IQI along with economic policy and geography factors lead to a positive improvement in the level of DQI; and (ii) results remain robust for IQI and relatively robust for economic policy and geography even when it is compared across cross-section and panel data estimation for a set of 102 countries over 1980 to 2004. The results strongly indicate that institutions matter in the context of specific economic policy mixes and geography related factors illustrated by disease burden, etc. It demonstrates that relative influence of institutions varies across stages of development
Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia
The saltwater crocodile is distributed throughout south-east Asia and Australia. In Australia, it is most abundant in the Northern Territory and Queensland, where it is sustainably farmed for its skins and meat. The aim of this study was to elucidate the relationships and genetic structure among saltwater crocodiles from the Northern Territory of Australia using mitochondrial control region sequences from 61 individuals, representing nine river basins and six of unknown origin, as well as published sequences from other regions. Eight mitochondrial control region haplotypes were identified among both published and novel sequences. Three of the haplotypes appear to be restricted to specimens from northern Australia, with a single haplotype being the most widely dispersed across all river basins. Although Analysis of Molecular Variance provides some support for differentiation among river basins, the frequency of shared haplotypes among these geographical units and median-joining network analysis do not support a clear genetic structure or phylogeographic pattern for saltwater crocodiles in the Northern Territory. The results of this study will assist in furthering our understanding of the genetic diversity of wild saltwater crocodile populations used for ranching in the Northern Territory, as well as providing a framework for assessing the origin of unknown specimens in the future.8 page(s