57 research outputs found

    MEASURING & MONITORING Plant Populations

    Get PDF
    The root of the word monitoring means to warn, and an essential purpose of monitoring is to raise a warning flag that the current course of action is not working. Monitoring is a powerful tool for identifying problems in the early stages, before they become dramatically obvious or crises. If identified early, problems can be addressed while cost-effective solutions are still available. For example, an invasive species that threatens a rare plant population is much easier to control at the initial stages of invasion, compared to eradicating it once it is well established at a site. Monitoring is also critical for measuring management success. Good monitoring can demonstrate that the current management approach is working and provide evidence supporting the continuation of current management

    The True Durations of Starbursts: HST Observations of Three Nearby Dwarf Starburst Galaxies

    Full text link
    The duration of a starburst is a fundamental parameter affecting the evolution of galaxies yet, to date, observational constraints on the durations of starbursts are not well established. Here we study the recent star formation histories (SFHs) of three nearby dwarf galaxies to rigorously quantify the duration of their starburst events using a uniform and consistent approach. We find that the bursts range from ~200 - ~400 Myr in duration resolving the tension between the shorter timescales often derived observationally with the longer timescales derived from dynamical arguments. If these three starbursts are typical of starbursts in dwarf galaxies, then the short timescales (3 - 10 Myr) associated with starbursts in previous studies are best understood as "flickering" events which are simply small components of the larger starburst. In this sample of three nearby dwarfs, the bursts are not localized events. All three systems show bursting levels of star formation in regions of both high and low stellar density. The enhanced star formation moves around the galaxy during the bursts and covers a large fraction of the area of the galaxy. These massive, long duration bursts can significantly affect the structure, dynamics, and chemical evolution of the host galaxy and can be the progenitors of "superwinds" that drive much of the recently chemically enriched material from the galaxy into the intergalactic medium.Comment: 41 pages, 14 figures, ApJ, Accepte

    Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE

    Get PDF
    The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure

    Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone

    Get PDF
    The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission

    Glial ankyrins facilitate paranodal axoglial junction assembly

    Get PDF
    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions, and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, are essential for rapid saltatory conduction, and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and important for membrane domain establishment and maintenance in many cell types. Here, we show that ankyrinB, expressed by Schwann cells, and ankyrinG, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing central nervous system

    Measuring & Monitering Plant Populations

    Get PDF
    This technical reference describes the role of effective monitoring and provides a step-by-step overview of the entire monitoring process for single plant species. The challenges of successful monitoring involve efficient and specific design and a commitment to implementation of the monitoring project, from data collection to reporting and using results. The material in this reference is presented in a logical progression from planning and objective setting, designing the methodology, and taking the measurements in the field to analyzing and presenting the data and making the necessary management responses. However, many of the steps occur simultaneously or provide feedback for the others. Decisions made at each step of the monitoring process can affect the whole project and may sometime lead to reassessment of previous decisions

    MEASURING & MONITORING Plant Populations

    Get PDF
    The root of the word monitoring means to warn, and an essential purpose of monitoring is to raise a warning flag that the current course of action is not working. Monitoring is a powerful tool for identifying problems in the early stages, before they become dramatically obvious or crises. If identified early, problems can be addressed while cost-effective solutions are still available. For example, an invasive species that threatens a rare plant population is much easier to control at the initial stages of invasion, compared to eradicating it once it is well established at a site. Monitoring is also critical for measuring management success. Good monitoring can demonstrate that the current management approach is working and provide evidence supporting the continuation of current management
    corecore