488 research outputs found
The Oxidative state of LDL is the major determinant of anti/prooxidant effect of coffee on Cu<sup>2+</sup> catalysed peroxidation
Antioxidants exert contrasting effect on low density lipoprotein (LDL) oxidation catalysed by metals, acting as
pro-oxidants under select in vitro conditions. Through our study on the effect of coffee on LDL oxidation, we identified the parameters governing this phenomenon, contributing to the comprehension of its mechanism and discovering significant implications for correct alimentary recommendations. By measuring conjugated diene formation, we have analysed the quantitative and qualitative effects exerted by an extract of roasted coffee on LDL oxidation triggered by copper sulphate. When the relative effects of different coffee concentrations were plotted against the lag time (LT) of control LDL (C-LDL), the apparently random experimental data arranged in sensible patterns: by increasing the LT the antioxidant activity of coffee decreased progressively to become prooxidant. The critical LT, at which coffee switches from antioxidant to prooxidant, increased by increasing coffee concentration. Also the contrasting results obtained following a delayed addition of coffee to the assay, arranged in a simple pattern when referred to the LT of C-LDL: the prooxidant effect decreased to become antioxidant as the LT of C-LDL increased. The dependence of coffee effect on the LT of C-LDL was influenced by LDL but not by metal catalyst concentration. These novel findings point to the oxidative
state of LDL as a major parameter controlling the anti/prooxidant effect of coffee and suggest the LT of C-LDL as a potent analytical tool to express experimental data when studying the action exerted by a compound on LDL oxidation
Combination of pharmacotherapy and lidocaine analgesic block of the peripheral trigeminal branches for trigeminal neuralgia: a pilot study
Classical trigeminal neuralgia (CTN) is treated predominantly by pharmacotherapy but side effects and unsuccessful occurs. The current study was carried out to evaluate the therapeutic effect of combination of pharmacotherapy and lidocaine block. Thirteen patients with CTN managed with pharmacotherapy were recruited and assigned either to no additional treatment (Group I) or to additional analgesic block (Group II). The primary endpoint was the reduction in the frequency of pain episodes in a month assessed at 30 and 90 days. Comparisons of measurements of pain, general health and depression scales were secondary endpoints. The results from the follow-up visits at 30 and 90 days showed the Group II to have larger reduction in the frequency of pain and exhibited a bigger improvement in the scores of the pain, general health and depression scales. The results from this preliminary study suggest a clinical benefit of the combination of pharmacotherapy and lidocaine block
Percutaneous kyphoplasty: New treatment for painful vertebral body fractures
Aims and Background: The purpose of this study was to assess the effectiveness and safety of Percutaneous Kyphoplasty as a new method of treatment for pain deriving from vertebral compression firactures (VCF). Patients and Methods: We treated sixteen patients with unremitting pain over spine, which increased particularly when pressure was applied over the spinous process, in absence of neurological signs and refractory to conventional medical therapy. Results: The method demonstrated swift pain relief associated with an evident augmentation in the resistance and restoration of the vertebral body's physiological shape. Polymethylmethacrylate (PMMA) leakages were not observed in the epidural space or foraminal area. The presence of complications such as pulmonary embolism involving the venous plexus, toxicity due to PMMA and infection due the procedure did not occur. Conclusion: Kyphoplasty is an effective, alternative, simple and safe treatment of vertebral collapse consequent to osteoporosis, aggressive haemangiomas, myelomas and metastases
The Oxidative State of LDL is the Major Determinant of Anti/Prooxidant Effect of Coffee on Cu2+ Catalysed Peroxidation
Antioxidants exert contrasting effect on low density lipoprotein (LDL) oxidation catalysed by metals, acting as pro-oxidants under select in vitro conditions. Through our study on the effect of coffee on LDL oxidation, we identified the parameters governing this phenomenon, contributing to the comprehension of its mechanism and discovering significant implications for correct alimentary recommendations. By measuring conjugated diene formation, we have analysed the quantitative and qualitative effects exerted by an extract of roasted coffee on LDL oxidation triggered by copper sulphate. When the relative effects of different coffee concentrations were plotted against the lag time (LT) of control LDL (C-LDL), the apparently random experimental data arranged in sensible patterns: by increasing the LT the antioxidant activity of coffee decreased progressively to become prooxidant. The critical LT, at which coffee switches from antioxidant to prooxidant, increased by increasing coffee concentration. Also the contrasting results obtained following a delayed addition of coffee to the assay, arranged in a simple pattern when referred to the LT of C-LDL: the prooxidant effect decreased to become antioxidant as the LT of C-LDL increased. The dependence of coffee effect on the LT of C-LDL was influenced by LDL but not by metal catalyst concentration. These novel findings point to the oxidative state of LDL as a major parameter controlling the anti/prooxidant effect of coffee and suggest the LT of C-LDL as a potent analytical tool to express experimental data when studying the action exerted by a compound on LDL oxidation
Differentially methylated microRNAs in prediagnostic samples of subjects who developed breast cancer in the european prospective investigation into nutrition and cancer (EPIC-Italy) cohort
The crosstalk between microRNAs (miRNAs) and other epigenetic factors may lead to novel hypotheses about carcinogenesis identifying new targets for research. Because a single miRNA can regulate multiple downstream target genes, its altered expression may potentially be a sensitive biomarker to detect early malignant transformation and improve diagnosis and prognosis. In the current study, we tested the hypothesis that altered methylation of miRNA encoding genes, associated with deregulated mature miRNA expression, may be related to dietary and lifestyle factors and may contribute to cancer development. In a case-control study nested in a prospective cohort (EPIC-Italy), we analysed DNA methylation levels of miRNA encoding genes (2191 CpG probes related to 517 genes) that are present in the Infinium Human Methylation450 BeadChip array in prediagnostic peripheral white blood cells of subjects who developed colorectal cancer (CRC, n = 159) or breast cancer (BC, n = 166) and matched subjects who remained clinically healthy. In the whole cohort, several differentially methylated miRNA genes were observed in association with age, sex, smoking habits and physical activity. Interestingly, in the case-control study, eight differentially methylated miRNAs were identified in subjects who went on to develop BC (miR-328, miR-675, miR-1307, miR-1286, miR-1275, miR-1910, miR-24-1 and miR-548a-1; all Bonferroni-adjusted P < 0.05). No significant associations were found with CRC. Assuming that altered methylation of miRNAs detectable in blood may be present before diagnosis, it may represent a biomarker for early detection or risk of cancer and may help to understand the cascade of events preceding tumour onset
Life-course socioeconomic status and DNA methylation of genes regulating inflammation
Background: In humans, low socioeconomic status (SES) across the life course is associated with greater diurnal cortisol production, increased inflammatory activity and higher circulating antibodies for several pathogens, all suggesting a dampened immune response. Recent evidence suggests that DNA methylation of pro-inflammatory genes may be implicated in the biological embedding of the social environment. Methods: The present study examines the association between life-course SES and DNA methylation of candidate genes, selected on the basis of their involvement in SES-related inflammation, in the context of a genome-wide methylation study. Participants were 857 healthy individuals sampled from the EPIC Italy prospective cohort study. Results: Indicators of SES were associated with DNA methylation of genes involved in inflammation. NFATC1, in particular, was consistently found to be less methylated in individuals with low vs high SES, in a dose-dependent manner. IL1A, GPR132 and genes belonging to the MAPK family were also less methylated among individuals with low SES. In addition, associations were found between SES and CXCL2 and PTGS2, but these genes were consistently more methylated among low SES individuals. Conclusions: Our findings support the hypothesis that the social environment leaves an epigenetic signature in cells. Although the functional significance of SES-related DNA methylation is still unclear, we hypothesize that it may link SES to chronic disease ris
Vertebral Augmentation: Is It Time to Get Past the Pain? A Consensus Statement from the Sardinia Spine and Stroke Congress
Vertebral augmentation has been used to treat painful vertebral compression fractures and metastatic lesions in millions of patients around the world. An international group of subject matter experts have considered the evidence, including but not limited to mortality. These considerations led them to ask whether it is appropriate to allow the subjective measure of pain to so dominate the clinical decision of whether to proceed with augmentation. The discussions that ensued are related below
Association of Coffee Consumption and Prediagnostic Caffeine Metabolites With Incident Parkinson Disease in a Population-Based Cohort
Background and ObjectivesInverse associations between caffeine intake and Parkinson disease (PD) have been frequently implicated in human studies. However, no studies have quantified biomarkers of caffeine intake years before PD onset and investigated whether and which caffeine metabolites are related to PD.MethodsAssociations between self-reported total coffee consumption and future PD risk were examined in the EPIC4PD study, a prospective population-based cohort including 6 European countries. Cases with PD were identified through medical records and reviewed by expert neurologists. Hazard ratios (HRs) and 95% CIs for coffee consumption and PD incidence were estimated using Cox proportional hazards models. A case-control study nested within the EPIC4PD was conducted, recruiting cases with incident PD and matching each case with a control by age, sex, study center, and fasting status at blood collection. Caffeine metabolites were quantified by high-resolution mass spectrometry in baseline collected plasma samples. Using conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated for caffeine metabolites and PD risk.ResultsIn the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-adjusted HR comparing the highest coffee intake with nonconsumers was 0.63 (95% CI 0.46-0.88, p = 0.006). In the nested case-control study, which included 351 cases with incident PD and 351 matched controls, prediagnostic caffeine and its primary metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The ORs were 0.80 (95% CI 0.67-0.95, p = 0.009), 0.82 (95% CI 0.69-0.96, p = 0.015), and 0.78 (95% CI 0.65-0.93, p = 0.005), respectively. Adjusting for smoking and alcohol consumption did not substantially change these results.DiscussionThis study demonstrates that the neuroprotection of coffee on PD is attributed to caffeine and its metabolites by detailed quantification of plasma caffeine and its metabolites years before diagnosis
- …