1,326 research outputs found

    AGILE–STAGE GATE MANAGEMENT (ASGM): NPD IMPLEMENTATION PRACTICES FROM GLOBAL FIRMS DEVELOPING COMPLEX, PHYSICAL PRODUCTS

    Get PDF
    Stage Gate Management (SGM) has been used successfully by global organizations to direct the New Product Development process (NPD) for years, recently a new variant of this venerable approach has emerged. Researchers and firms have begun to intersperse elements of Agile, as popularized for the development of software, to create an Agile – Stage Gate Management (ASGM) hybrid NPD framework. Agile practitioners believe in process waste reduction, an intense focus on customers, and the creation of nimble entrepreneurial project teams, which, for software products, has positively impacted development time to market, resource utilization, and market success, more generally, improved business outcomes. For NPD professionals responsible for physical products, not solely software, do these Agile tenets continue to produce results? With minimal available research, a Grounded Theory study was conducted to inductively create theory from the implementation of ASGM, specifically for firms that design, develop, and manufacture physical products. Twenty-nine experienced industry professionals were interviewed from four global companies which represented five distinct Business Units (BU) which competed in a variety of markets and industries around the world. From these interviews, a Content Analysis approach was employed to organize primary and secondary themes which illustrated NPD team practices. Additionally, a comparative multi-case study method further developed specific Agile/Scrum techniques implemented, the measures of business success realized, as well as, a new ASGM model for like firms. From this research, firms which developed physical products did not implement all Agile practices, only Team Interface, Product Demonstrations, and Specification Flexibility were uncovered. The cases did, however, subjectively realize an improved time to market, as well as, greater product success for projects commercialized using ASGM. Lastly, a new framework emerged which highlighted the unique practice of Agile behaviors earlier in the development process, but rigid, or SGM-like, activities closer towards product launch

    Agile Stage-Gate Management (ASGM) for physical products

    Get PDF
    We present a qualitative study of Agile Stage-Gate Management (ASGM),: a hybrid new product development methodology that combines Agile and Stage-Gate Management (SGM) approaches for the coordination of new product development. When applied to software projects, Agile is expected to deliver reduced development times, improved resource utilization, and greater financial success. We examine whether ASGM practitioners realize similar outcomes in a sample of global firms developing complex electro-mechanical products (e.g., automobile components, railway propulsion systems, and medical devices). Our grounded theory approach articulates an understanding of ASGM through extensive interviews of experienced professionals. Our thematic analysis supports many expected benefits (i.e., speed to market, innovation enabling), but also does not encourage others, and reveals new pitfalls that deserve recognition (i.e., resource inefficiency). ASGM is not a panacea for all product development. Overall, physical product firms adopting this method can expect reduced development times and higher levels of innovation but will expend more resources to complete development projects, but a dichotomy exists. Physical product developers using ASGM experience a negative impact on project resource efficiency due to the need for dedicated resources, frequent product demonstrations, and duplicative management structures

    The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z~3

    Get PDF
    We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on their radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. By fixing the slope of the auto-correlation function to gamma=2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies (M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain /M_halo/M_halo<~10^{-2.4} in the case of star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming galaxies, we derive /M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.Comment: 11 pages, 7 figures, minor changes to match published version on MNRA

    X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Full text link
    AGN are known to have complex X-ray spectra that depend on both the properties of the accreting SMBH (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity ("torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with X-ray data and photometric redshifts. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (abridged). Simpler models are ruled out with decisive evidence in favour of a geometrically extended structure with significant Compton scattering. Regarding the geometry of the obscurer, there is strong evidence against both a completely closed or entirely open toroidal geometry, in favour of an intermediate case. The additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient in the torus or reflection off the accretion disk. Finally, we release a catalogue with estimated parameters such as the accretion luminosity in the 2-10 keV band and the column density, NHN_{H}, of the obscurer.Comment: 28 pages, 18 figures, catalogue available from https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software available from https://github.com/JohannesBuchner/BX

    A tidal disruption flare in a massive galaxy? Implications for the fuelling mechanisms of nuclear black holes

    Full text link
    We argue that the `changing look' AGN recently reported by LaMassa et al. could be a luminous flare produced by the tidal disruption of a super-solar mass star passing just a few gravitational radii outside the event horizon of a 108M\sim 10^8 M_{\odot} nuclear black hole. This flare occurred in a massive, star forming galaxy at redshift z=0.312z=0.312, robustly characterized thanks to repeated late-time photometric and spectroscopic observations. By taking difference-photometry of the well sampled multi-year SDSS Stripe-82 light-curve, we are able to probe the evolution of the nuclear spectrum over the course of the outburst. The tidal disruption event (TDE) interpretation is consistent with the very rapid rise and the decay time of the flare, which displays an evolution consistent with the well-known t5/3t^{-5/3} behaviour (with a clear superimposed re-brightening flare). Our analysis places constraints on the physical properties of the TDE, such as the putative disrupted star's mass and orbital parameters, as well as the size and temperature of the emitting material. The properties of the broad and narrow emission lines observed in two epochs of SDSS spectra provide further constraints on the circum-nuclear structure, and could be indicative that the system hosted a moderate-luminosity AGN as recently as a few 10410^4 years ago, and is likely undergoing residual accretion as late as ten years after peak, as seen from the broad Hα\alpha emission line. We discuss the complex interplay between tidal disruption events and gas accretion episodes in galactic nuclei, highlighting the implications for future TDE searches and for estimates of their intrinsic rates.Comment: 20 pages, 9 figures, 3 tables. Accepted for publication in MNRA

    A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. II. The Role of Mergers in Galaxy Evolution

    Get PDF
    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 10^(12) L_☉) being up to ~50%. We also find that the fraction of spirals drops dramatically with L_(IR). Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L_(IR) 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U – V color of the galaxies in our sample peaks in the green valley (= 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals (<10^(12) M_☉) to have been formed entirely by gas-rich major mergers

    Discovery of Radio Emission from the Quasar SDSS J1536+0441, a Candidate Binary Black-Hole System

    Full text link
    The radio-quiet quasar SDSS J1536+0441 shows two broad-line emission systems that Boroson & Lauer interpret as a candidate binary black-hole system with a separation of 0.1 pc (0.02 mas). From new VLA imaging at 8.5 GHz, two faint sources, separated by 0.97 arcsec (5.1 kpc), have been discovered within the quasar's optical localization region. Each radio source is unresolved, with a diameter of less than 0.37 arcsec (1.9 kpc). A double radio structure is seen in some other radio-quiet quasars, and the double may be energized here by the candidate 0.1-pc binary black-hole system. Alternatively, the radio emission may arise from a binary system of quasars with a projected separation of 5.1 kpc, and the two quasars may produce the two observed broad-line emission systems. Binary active galactic nuclei with a kpc scale separation are known from radio and X-ray observations, and a few such system are expected in the Boroson & Lauer sample based on the observed clustering of quasars down to the 10 kpc scale. Future observations designed to distinguish between the 0.1 pc and 5 kpc scales for the binary system are suggested.Comment: 5 pages; 1 figure; emulateapj.cls; to appear in ApJ

    Finding counterparts for All-sky X-ray surveys with Nway: a Bayesian algorithm for cross-matching multiple catalogues

    Full text link
    We release the AllWISE counterparts and Gaia matches to 106,573 and 17,665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b|>15. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g., colors, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a WISE color-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ~ 94.7% (2RXS) and 97.4% (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96% and 99% with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.Comment: MNRAS, Paper accepted for publication. Updated catalogs are available at www.mpe.mpg.de/XraySurveys/2RXS_XMMSL2 . NWAY available at https://github.com/JohannesBuchner/nwa

    Spitzer bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z=3-7

    Get PDF
    We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.Comment: 18 pages, 15 figures, 4 tables. Updated to match version in press at the Ap

    Editorial : When the body feels like mine : constructing and deconstructing the sense of body ownership through the lifespan

    Get PDF
    Marie Skłodowska-Curie Intra-European Individual Fellowship, 891175Israeli Science Foundation, 1169/17National Institute of Mental Health, R01MH 102272Accepte
    corecore