28 research outputs found

    Climate-human interaction associated with southeast Australian megafauna extinction patterns

    Get PDF
    The mechanisms leading to megafauna (>44 kg) extinctions in Late Pleistocene (126,000-12,000 years ago) Australia are highly contested because standard chronological analyses rely on scarce data of varying quality and ignore spatial complexity. Relevant archaeological and palaeontological records are most often also biased by differential preservation resulting in under-representated older events. Chronological analyses have attributed megafaunal extinctions to climate change, humans, or a combination of the two, but rarely consider spatial variation in extinction patterns, initial human appearance trajectories, and palaeoclimate change together. Here we develop a statistical approach to infer spatio-temporal trajectories of megafauna extirpations (local extinctions) and initial human appearance in south-eastern Australia. We identify a combined climate-human effect on regional extirpation patterns suggesting that small, mobile Aboriginal populations potentially needed access to drinkable water to survive arid ecosystems, but were simultaneously constrained by climate-dependent net landscape primary productivity. Thus, the co-drivers of megafauna extirpations were themselves constrained by the spatial distribution of climate-dependent water sources.FrĂ©dĂ©rik SaltrĂ©, JoĂ«l Chadoeuf, Katharina J. Peters, Matthew C. McDowell, Tobias Friedrich, Axel Timmermann, Sean Ulm and Corey J. A. Bradsha

    A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    Full text link
    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery

    A comprehensive database of quality-rated fossil ages for Sahul’s Quaternary vertebrates

    Get PDF
    Published: 19 July 2016The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery.Marta Rodríguez-Rey, y, Salvador Herrando-Pérez, Barry W. Brook, Frédérik Saltré, John Alroy, Nicholas Beeton, Michael I. Bird, Alan Cooper, Richard Gillespie, Zenobia Jacobs, Christopher N. Johnson, Gifford H. Miller, Gavin J. Prideaux, Richard G. Roberts, Chris S.M. Turney and Corey J.A. Bradsha

    Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands

    Get PDF
    An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America’s largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.Open Access fees paid for in whole or in part by the University of Oklahoma Libraries Radiocarbon and isotope laboratory work was supported in part by the NSF Archaeometry Program BCS-1460369 (to D.J.K. and B.J.C). M.B was supported by a Royal Society fellowship. Additional funding was provided by the University of Oklahoma, the University of Oregon, and the Smithsonian Institution.Ye

    The role of temperature on treeline migration for an eastern African mountain during the Last Glacial Maximum

    No full text
    Paleo-data suggest that East African mountain treelines underwent an altitudinal shift during the Last Glacial Maximum (LGM). Understanding the ecological and physiological processes underlying treeline response to such past climate change will help to improve forecasts of treeline change under future global warming. In spite of significant improvements in paleoclimatic reconstruction, the climatic conditions explaining this migration are still debated and important factors such as atmospheric CO2 concentration, the impact of lapse rate decreasing temperature along altitudinal gradients and rainfall modifications due to elevation have often been neglected or simplified. Here, we assess the effects of these different factors and estimate the influence of the most dominant factors controlling changes in past treeline position using a multi-proxy approach based on simulations from BIOME4, a coupled biogeography and biogeochemistry model, modified to account for the effect of elevation on vegetation, compared with pollen, and isotopic data. The results indicate a shift in mountain vegetation at the LGM was controlled by low pCO2 and low temperatures promoting species morphologically and physiologically better adapted to LGM conditions than many trees composing the forest belt limit. Our estimate that the LGM climate was cooler than today’s by −4.5 °C (range: −4.3 to −4.6 °C) at the upper limit of the treeline, whereas at 831 m it was cooler by −1.4 °C (range: −2.6 to −0.6 °C), suggests that a possible lapse rate modification strongly constrained the upper limit of treeline, which may limit its potential extension under future global warming.F. SaltrĂ©, I. Bentaleb, C. Favier, D. Joll

    High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia

    No full text
    The last large marsupial carnivores-the Tasmanian devil (Sarcophilis harrisii) and thylacine (Thylacinus cynocephalus)-went extinct on mainland Australia during the mid-Holocene. Based on the youngest fossil dates (approx. 3500 years before present, BP), these extinctions are often considered synchronous and driven by a common cause. However, many published devil dates have recently been rejected as unreliable, shifting the youngest mainland fossil age to 25 500 years BP and challenging the synchronous-extinction hypothesis. Here we provide 24 and 20 new ages for devils and thylacines, respectively, and collate existing, reliable radiocarbon dates by quality-filtering available records. We use this new dataset to estimate an extinction time for both species by applying the Gaussian-resampled, inverse-weighted McInerney (GRIWM) method. Our new data and analysis definitively support the synchronous-extinction hypothesis, estimating that the mainland devil and thylacine extinctions occurred between 3179 and 3227 years BP.Lauren C. White, Frederik Saltre, Corey J. A. Bradshaw and Jeremy J. Austi

    Why decadal to century timescale paleoclimate data is needed to explain present-day patterns of biological diversity and change

    No full text
    The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts since the Last Glacial Maximum are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high-temporal-resolution paleoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≄ 1,000 years) climate snapshots. We show here that this is a flawed assumption, because regional climates have changed significantly across decades and centuries during glacial/interglacial cycles, likely causing rapid regional replacement of biota. We demonstrate how recent atmosphere-ocean general circulation model (AOGCM) simulations of the climate of the past 21,000 years can provide credible estimates of the details of climate change on decadal to centennial time scales, showing that these details differ radically from what might be inferred from longer time scale information. High temporal resolution information can provide more meaningful estimates of the magnitude and pace of climate shifts, the location and timing of drivers of physiological stress, and the extent of novel climates. They also produce new opportunities to directly investigate whether short-term climate variability is more important in shaping biodiversity patterns, rather than gradual changes in long-term climatic means. Together these more accurate measures of past climate instability are likely to bring about a better understanding of the role of paleoclimatic change and variability in shaping current macro-ecological patterns in many regions of the world.Damien A. Fordham, FrĂ©dĂ©rik SaltrĂ©, Stuart C. Brown, Camille Mellin, Tom M.L. Wigle

    Climate-driven shifts in the distribution of koala-browse species from the Last Interglacial to the near future

    Get PDF
    The koala's Phascolarctos cinereus distribution is currently restricted to eastern and south‐eastern Australia. However, fossil records dating from 70 ± 4 ka (ka = 103 yr) from south‐western Australia and the Nullarbor Plain are evidence of subpopulation extinctions in the southwest at least after the Last Interglacial (~128–116 ka). We hypothesize that koala sub‐population extinctions resulted from the eastward retraction of the koala's main browse species in response to unsuitable climatic conditions. We further posit a general reduction in the distribution of main koala‐browse trees in the near future in response climate change. We modelled 60 koala‐browse species and constructed a set of correlative species distribution models for five time periods: Last Interglacial (~128–116 ka), Last Glacial Maximum (~23–19 ka), Mid‐Holocene (~7–5 ka), present (interpolations of observed data, representative of 1960–1990), and 2070. We based our projections on five hindcasts and one forecast of climatic variables extracted from WorldClim based on two general circulation models (considering the most pessimistic scenario of high greenhouse‐gas emissions) and topsoil clay fraction. We used 17 dates of koala fossil specimens identified as reliable from 70 (± 4) to 535 (± 49) ka, with the last appearance of koalas at 70 ka in the southwest. The main simulated koala‐browse species were at their greatest modelled extent of suitability during the Last Glacial Maximum, with the greatest loss of koala habitat occurring between the Mid‐Holocene and the present. We predict a similar habitat loss between the present and 2070. The spatial patterns of habitat change support our hypothesis that koala extinctions in the southwest, Nullarbor Plain and central South Australia resulted from the eastward retraction of the dominant koala‐browse species in response to long‐term climate changes. Future climate patterns will likely increase the extinction risk of koalas in their remaining eastern ranges.Farzin Shabani, Mohsen Ahmadi, Katharina J. Peters, Simon Haberle, Antoine Champreux, FrĂ©dĂ©rik SaltrĂ©, Corey J. A. Bradsha

    Predicting and mitigating future biodiversity loss using long-term ecological proxies

    No full text
    Uses of long-term ecological proxies in strategies for mitigating future biodiversity loss are too limited in scope. Recent advances in geochronological dating, palaeoclimate reconstructions and molecular techniques for inferring population dynamics offer exciting new prospects for using retrospective knowledge to better forecast and manage ecological outcomes in the face of global change. Opportunities include using fossils, genes and computational models to identify ecological traits that caused species to be differentially prone to regional and range-wide extinction, test if threatened-species assessment approaches work and locate habitats that support stable ecosystems in the face of shifting climates. These long-term retrospective analyses will improve efforts to predict the likely effects of future climate and other environmental change on biodiversity, and target conservation management resources most effectively.Damien A. Fordham, H. Resit Akçakaya, John Alroy, Frédérik Saltré, Tom M. L. Wigley and Barry W. Broo
    corecore