273 research outputs found

    Inhibition of ionotropic GluR signaling preserves oligodendrocyte lineage and myelination in an ex vivo rat model of white matter ischemic injury

    Get PDF
    Preterm infants have a high risk of neonatal white matter injury (WMI). WMI leads to reduced myelination, inflammation, and clinical neurodevelopmental deficits for which there are no effective treatments. Ionotropic glutamate receptor (iGluR) induced excitotoxicity contributes to oligodendrocyte (OL) lineage cell loss and demyelination in brain models of neonatal and adult WMI. Here, we hypothesized that simulated ischemia (oxygen–glucose deprivation) damages white matter via activation of iGluR signaling, and that iGluR inhibition shortly after WMI could mitigate OL loss, enhance myelination, and suppress inflammation in an ex vivo cerebellar slice model of developing WMI. Inhibition of iGluR signaling by a combined block of AMPA and NMDA receptors, shortly after simulated ischemia, restored myelination, reduced apoptotic OLs, and enhanced OL precursor cell proliferation and maturation as well as upregulated expression of transcription factors regulating OL development and remyelination. Our findings demonstrate that iGluR inhibition post–injury alleviates OL lineage cell loss and inflammation and promotes myelination upon developing WMI. The findings may help to develop therapeutic interventions for the WMI treatment

    Decontamination of 16S rRNA gene amplicon sequence datasets based on bacterial load assessment by qPCR

    Full text link
    Identification of unexpected taxa in 16S rRNA surveys of low-density microbiota, diluted mock communities and cultures demonstrated that a variable fraction of sequence reads originated from exogenous DNA. The sources of these contaminants are reagents used in DNA extraction, PCR, and next-generation sequencing library preparation, and human (skin, oral and respiratory) microbiota from the investigators

    Comparison of balance assessment modalities in emergency department elders: a pilot cross-sectional observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than one-third of US adults 65 and over fall every year. These falls may cause serious injury including substantial long-term morbidity (due declines in activities of daily living) and death. The emergency department (ED) visit represents an opportunity for identifying high risk elders and potentially instituting falls-related interventions. The unique characteristic of the ED environment and patient population necessitate that risk-assessment modalities be validated in this specific setting. In order to better identify elders at risk of falls, we examined the relationship between patient-provided history of falling and two testing modalities (a balance plate system and the timed up-and-go [TUG] test) in elder emergency department (ED) patients.</p> <p>Methods</p> <p>We conducted a cross-sectional observational study of patients ≥ 60 years old being discharged from the ED. Patient history of falls in the past week, month, 6 months, and year was obtained. Balance plate center of pressure excursion (COP) measurements and TUG testing times were recorded. COP was recorded under four conditions: normal stability eyes open (NSEO) and closed (NSEC), and perturbed stability eyes open and closed. Correlation between TUG and COP scores was measured. Univariate logistic regression was used to identify the relationship between patient-provided falls history and the two testing modalities. Proportions, likelihood ratios, and receiver-operating-characteristic (ROC) curves for prediction of previous falls were reported.</p> <p>Results</p> <p>Fifty-three subjects were enrolled, 11% had fallen in the previous week and 42% in the previous year. There was no correlation between TUG and any balance plate measurements. In logistic regression, neither testing modality was associated with prior history of falls (<it>p </it>> 0.05 for all time periods). Balance plate NSEO and NSEC testing cutoffs could be identified which were 83% sensitive and had a negative likelihood ratio (LR-) of 0.3 for falls in the past week. TUG testing was not useful for falls in the past week, but performed best for more distant falls in the past month, 6 months, or year. TUG cutoffs with sensitivity over 80% and LR(-) of 0.17-0.32 could be identified for these time periods.</p> <p>Conclusion</p> <p>Over 40% of community-dwelling elder ED patients report a fall within the past year. Balance plate and TUG testing were feasibly conducted in an ED setting. There is no relationship between scores on balance plate and TUG testing in these patients. In regression analysis, neither modality was significantly associated with patient provided history of falls. These modalities should not be adopted for screening purposes in elders in the ED setting without validation in future studies or as part of multi-factorial risk assessment.</p

    Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src

    Get PDF
    Abstract The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism

    Of risks and regulations: how leading U.S. nanoscientists form policy stances about nanotechnology

    Get PDF
    Even though there is a high degree of scientific uncertainty about the risks of nanotechnology, many scholars have argued that policy-making cannot be placed on hold until risk assessments are complete (Faunce, Med J Aust 186(4):189–191, 2007; Kuzma, J Nanopart Res 9(1):165–182, 2007; O’Brien and Cummins, Hum Ecol Risk Assess 14(3):568–592, 2008; Powell et al., Environ Manag 42(3):426–443, 2008). In the absence of risk assessment data, decision makers often rely on scientists’ input about risks and regulation to make policy decisions. The research we present here goes beyond the earlier descriptive studies about nanotechnology regulation to explore the heuristics that the leading U.S. nanoscientists use when they make policy decisions about regulating nanotechnology. In particular, we explore the relationship between nanoscientists’ risk and benefit perceptions and their support for nanotech regulation. We conclude that nanoscientists are more supportive of regulating nanotechnology when they perceive higher levels of risks; yet, their perceived benefits about nanotechnology do not significantly impact their support for nanotech regulation. We also find some gender and disciplinary differences among the nanoscientists. Males are less supportive of nanotech regulation than their female peers and materials scientists are more supportive of nanotechnology regulation than scientists in other fields. Lastly, our findings illustrate that the leading U.S. nanoscientists see the areas of surveillance/privacy, human enhancement, medicine, and environment as the nanotech application areas that are most in need of new regulations

    Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible

    Single Molecule PCR Reveals Similar Patterns of Non-Homologous DSB Repair in Tobacco and Arabidopsis

    Get PDF
    DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1–20 bp) deletions occurred at a minority (25–45%) of repair junctions. Approximately ∼1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ
    corecore