4,835 research outputs found

    Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii

    Get PDF
    Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The Km of 109Cd influx into roots was similar in both ecotypes, while the Vmax was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. 109Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of 109Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher 109Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3–5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    A window on reality: perceiving edited moving images

    Get PDF
    Edited moving images entertain, inform, and coerce us throughout our daily lives, yet until recently, the way people perceive movies has received little psychological attention. We review the history of empirical investigations into movie perception and the recent explosion of new research on the subject using methods such as behavioral experiments, functional magnetic resonance imagery (fMRI) eye tracking, and statistical corpus analysis. The Hollywood style of moviemaking, which permeates a wide range of visual media, has evolved formal conventions that are compatible with the natural dynamics of attention and humans’ assumptions about continuity of space, time, and action. Identifying how people overcome the sensory differences between movies and reality provides an insight into how the same cognitive processes are used to perceive continuity in the real world

    Dynamics of air–sea CO2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations

    Get PDF
    From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area

    Match-action: the role of motion and audio in creating global change blindness in film

    Get PDF
    An everyday example of change blindness is our difficulty to detect cuts in an edited moving-image. Edit Blindness (Smith & Henderson, 2008) is created by adhering to the continuity editing conventions of Hollywood, e.g. coinciding a cut with a sudden onset of motion (Match-Action). In this study we isolated the roles motion and audio play in limiting awareness of match-action cuts by removing motion before and/or after cuts in existing Hollywood film clips and presenting the clips with or without the original soundtrack whilst participants tried to detect cuts. Removing post-cut motion significantly decreased cut detection time and the probability of missing the cut. By comparison, removing pre-cut motion had no effect suggesting, contrary to the editing literature, that the onset of motion before a cut may not be as critical for creating edit blindness as the motion after a cut. Analysis of eye movements indicated that viewers reoriented less to new content across intact match-action cuts than shots with motion removed. Audio played a surprisingly large part in creating edit blindness with edit blindness mostly disappearing without audio. These results extend film editor intuitions and are discussed in the context of the Attentional Theory of Cinematic Continuity (Smith, 2012a)

    Flat photonic bands in guided modes of textured metallic microcavities

    Get PDF
    M. G. Salt and William L. Barnes, Physical Review B, Vol. 61, pp. 11125-11135 (2000). "Copyright © 2000 by the American Physical Society."A detailed experimental study of how wavelength-scale periodic texture modifies the dispersion of the guided modes of λ/2 metal-clad microcavities is presented. We first examine the case of a solid-state microcavity textured with a single, periodic corrugation. We explore how the depth of the corrugation and the waveguide thickness affect the width of the band gap produced in the dispersion of the guided modes by Bragg scattering off the periodic structure. We demonstrate that the majority of the corrugation depths studied dramatically modify the dispersion of the lowest-order cavity mode to produce a series of substantially flat bands. From measurements of how the central frequency of the band gap varies with direction of propagation of the guided modes, we determine a suitable two-dimensional texture profile for the production of a complete band gap in all directions of propagation. We then experimentally examine band gaps produced in the guided modes of such a two-dimensionally textured microcavity and demonstrate the existence of a complete band gap for all directions of propagation of the lowest-order TE-polarized mode. We compare our experimental results with those from a theoretical model and find good agreement. Implications of these results for emissive microcavity devices such as light-emitting diodes are discussed

    The Astronomical Orientation of Ancient Greek Temples

    Get PDF
    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity
    corecore