289 research outputs found

    Lunar accretion from a Roche-interior fluid disk

    Full text link
    We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of the inner disk, resulting in a total lunar accretion timescale of ~10^2 years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing < 2.5 lunar masses (ML), we find that a final Moon with mass > 0.8ML contains < 60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.Comment: 42 pages, 10 figures, 5 tables. Accepted for publication in The Astrophysical Journa

    Long-term & large-scale viscous evolution of dense planetary rings

    Full text link
    We investigate the long-term and large-scale viscous evolution of dense planetary rings using a simple 1D numerical code. We use a physically realistic viscosity model derived from N-body simulations (Daisaka et al., 2001), and dependent on the disk's local properties (surface mass density, particle size, distance to the planet). Particularly, we include the effects of gravitational instabilities (wakes) that importantly enhance the disk's viscosity. We show that common estimates of the disk's spreading time-scales with constant viscosity significantly underestimate the rings' lifetime. With a realistic viscosity model, an initially narrow ring undergoes two successive evolutionary stages: (1) a transient rapid spreading when the disk is self-gravitating, with the formation of a density peak inward and an outer region marginally gravitationally stable, and with an emptying time-scale proportional to 1/M_0^2 (where M_0 is the disk's initial mass) (2) an asymptotic regime where the spreading rate continuously slows down as larger parts of the disk become not-self-gravitating due to the decrease of the surface density, until the disk becomes completely not-self-gravitating. At this point its evolution dramatically slows down, with an emptying time-scale proportional to 1/M_0, which significantly increases the disk's lifetime compared to the case with constant viscosity. We show also that the disk's width scales like t^{1/4} with the realistic viscosity model, while it scales like t^{1/2} in the case of constant viscosity, resulting in much larger evolutionary time-scales in our model. We find however that the present shape of Saturn's rings looks like a 100 million-years old disk in our simulations. Concerning Jupiter's, Uranus' and Neptune's rings that are faint today, it is not likely that they were much more massive in the past and lost most of their mass due to viscous spreading alone.Comment: 18 pages, 18 figures, 2 tables. Accepted for publication in Icaru

    Universal electric-field-driven resistive transition in narrow-gap Mott insulators

    Get PDF
    One of today's most exciting research frontier and challenge in condensed matter physics is known as Mottronics, whose goal is to incorporate strong correlation effects into the realm of electronics. In fact, taming the Mott insulator-to-metal transition (IMT), which is driven by strong electronic correlation effects, holds the promise of a commutation speed set by a quantum transition, and with negligible power dissipation. In this context, one possible route to control the Mott transition is to electrostatically dope the systems using strong dielectrics, in FET-like devices. Another possibility is through resistive switching, that is, to induce the insulator-to-metal transition by strong electric pulsing. This action brings the correlated system far from equilibrium, rendering the exact treatment of the problem a difficult challenge. Here, we show that existing theoretical predictions of the off-equilibrium manybody problem err by orders of magnitudes, when compared to experiments that we performed on three prototypical narrow gap Mott systems V2-xCrxO3, NiS2-xSex and GaTa4Se8, and which also demonstrate a striking universality of this Mott resistive transition (MRT). We then introduce and numerically study a model based on key theoretically known physical features of the Mott phenomenon in the Hubbard model. We find that our model predictions are in very good agreement with the observed universal MRT and with a non-trivial timedelay electric pulsing experiment, which we also report. Our study demonstrates that the MRT can be associated to a dynamically directed avalanche

    Chemistry of the Protolunar Disk and Volatile Depletion of the Moon

    Get PDF
    In the giant impact theory for lunar origin, the Moon forms from a circumterrestrial disk of silicate debris produced by the collision of a planetary-sized impactor with the early Earth. Recent accretion models suggest that the final 10-60% of the lunar mass may be provided by the accretion of melt material spreading outward from the inner (Roche-interior) disk over the first ~102 years following the giant impact. The chemical and thermal evolution of the inner disk material is thus expected to strongly influence the bulk chemical composition of the Moon. In a previous study we explored the chemistry of the melt+vapor protolunar disk in order to examine the vapor pressure of the silicate magma and the chemistry of the protolunar disk atmosphere. Here we combine a chemical model for the disk with lunar accretion simulations and a thermal evolution model in order to explore the chemistry of the accreting lunar material and implications for the bulk lunar composition. A chemical equilibrium code is used to determine the partial pressure of each species in equilibrium with a BSE-composition melt. These vapor pressure results, along with the bulk elemental inventory of the disk, are used to estimate the relative fraction of each element in the melt vs. vapor phase as a function of the mass surface density and temperature of the disk. The coupled chemistry + lunar accretion + thermal model suggests that the temperature of the melt in the inner disk remains above estimated 50% condensation temperatures for the volatile elements Zn, Na, and K until the Moon has nearly completed its accretion. We thus expect the portion of the lunar material derived from the inner disk to be depleted in these and similarly volatile elements, even in the absence of thermal escape

    Protolunar Disk Evolution and the Depletion of Volatile Elements in the Moon

    Get PDF
    We explore how the evolution of the protolunar disk could lead to a depletion in K, Na, and Zn in the Moon relative to Earth even in the absence of escape

    Migration of a moonlet in a ring of solid particles : Theory and application to Saturn's propellers

    Full text link
    Hundred meter sized objects have been identified by the Cassini spacecraft in Saturn's A ring through the so-called "propeller" features they create in the ring. These moonlets should migrate, due to their gravitational interaction with the ring ; in fact, some orbital variation have been detected. The standard theory of type I migration of planets in protoplanetary disks can't be applied to the ring system, as it is pressureless. Thus, we compute the differential torque felt by a moonlet embedded in a two-dimensional disk of solid particles, with flat surface density profile, both analytically and numerically. We find that the corresponding migration rate is too small to explain the observed variations of the propeller's orbit in Saturn's A-ring. However, local density fluctuations (due to gravity wakes in the marginally gravitationally stable A-ring) may exert a stochastic torque on a moonlet. Our simulations show that this torque can be large enough to account for the observations, depending on the parameters of the rings. We find that on time scales of several years the migration of propellers is likely to be dominated by stochastic effects (while the former, non-stochastic migration dominates after ~ 10^{4-5} years). In that case, the migration rates provided by observations so far suggests that the surface density of the A ring should be of the order of 700 kg/m^2. The age of the propellers shouldn't exceed 1 to 100 million years, depending on the dominant migration regime.Comment: 17 pages, 5 figures, submitted to Astronomical Journal on february, the 23

    Engaging HIV-HCV co-infected patients in HCV treatment: the roles played by the prescribing physician and patients' beliefs (ANRS CO13 HEPAVIH cohort, France)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment for the hepatitis C virus (HCV) may be delayed significantly in HIV/HCV co-infected patients. Our study aims at identifying the correlates of access to HCV treatment in this population.</p> <p>Methods</p> <p>We used 3-year follow-up data from the HEPAVIH ANRS-CO13 nationwide French cohort which enrolled patients living with HIV and HCV. We included pegylated interferon and ribavirin-naive patients (N = 600) at enrolment. Clinical/biological data were retrieved from medical records. Self-administered questionnaires were used for both physicians and their patients to collect data about experience and behaviors, respectively.</p> <p>Results</p> <p>Median [IQR] follow-up was 12[12-24] months and 124 patients (20.7%) had started HCV treatment. After multiple adjustment including patients' negative beliefs about HCV treatment, those followed up by a general practitioner working in a hospital setting were more likely to receive HCV treatment (OR[95%CI]: 1.71 [1.06-2.75]). Patients followed by general practitioners also reported significantly higher levels of alcohol use, severe depressive symptoms and poor social conditions than those followed up by other physicians.</p> <p>Conclusions</p> <p>Hospital-general practitioner networks can play a crucial role in engaging patients who are the most vulnerable and in reducing existing inequities in access to HCV care. Further operational research is needed to assess to what extent these models can be implemented in other settings and for patients who bear the burden of multiple co-morbidities.</p
    • …
    corecore