6,812 research outputs found

    The ontology of causal process theories

    Get PDF
    There is a widespread belief that the so-called process theories of causation developed by Wesley Salmon and Phil Dowe have given us an original account of what causation really is. In this paper, I show that this is a misconception. The notion of "causal process" does not offer us a new ontological account of causation. I make this argument by explicating the implicit ontological commitments in Salmon and Dowe's theories. From this, it is clear that Salmon's Mark Transmission Theory collapses to a counterfactual theory of causation, while the Conserved Quantity Theory collapses to David Fair's phsyicalist reduction of causation

    Oxidative stress in the etiology of age-associated decline in glucose metabolism

    Get PDF
    One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is an independent factor for reduced glucose tolerance and increased insulin resistance. Oxidative stress has been shown to have significant detrimental impacts on the regulation of glucose homeostasis in vitro and in vivo. Furthermore, oxidative stress has been shown to be modulated by age and diet in several model systems. This review provides an overview of these data and addresses whether increases in oxidative stress with aging may be a primary determinant of age-related metabolic dysfunction

    The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements

    Get PDF
    Nitrate is frequently measured in ice cores, but its interpretation remains immature. Using daily snow surface concentrations of nitrate at Halley (Antarctica) for 2004 - 2005, we show that sharp spikes (> factor 2) in nitrate concentration can occur from day to day. Some of these spikes will be preserved in ice cores. Many of them are associated with sharp increases in the concentration of sea salt in the snow. There is also a close association between the concentrations of aerosol nitrate and sea salt aerosol. This evidence is consistent with many of the spikes in deposited nitrate being due to the conversion or trapping of gas- phase nitrate, i. e. to enhanced deposition rather than enhanced atmospheric concentrations of NOy. Previously, sharp spikes in nitrate concentration (with concentration increases of up to a factor 4 seen in probably just one snowfall) have been assigned to sharp production events such as solar proton events (SPEs). We find that it is unlikely that SPEs can produce spikes of the kind seen. Taken together with our evidence that such spikes can be produced depositionally, we find that it is not possible to track past SPEs without carrying out a new multi- site and multi- analyte programme. Seasonal and interannual trends in nitrate concentration in cores from any single site cannot be interpreted in terms of production changes until the recycling of nitrate from central Antarctica to coastal Antarctica is better quantified. It might be possible to assess the interannual input of NOy to the Antarctic lower troposphere by using a network of cores to estimate variability in the total annual deposition across the continent (which we estimate to be 9 +/- 2 x 10(7) kg/a - as NO3-), but it will first have to be established that the outflow across the coast can be ignored

    The Role of the Hydrographic Office

    Get PDF
    The paper which follows was written by a member of staff of the UK Hydrographic Office following a request by the President of the Directing Committee to the UK Hydrographer. While the International Hydrographic Review contains many papers dealing with specific and detailed aspects of the world of Hydrography and associated areas, few papers attempt to cover the broader canvas. It was felt that as we approach the millennium, this would be an appropriate time to set out the continuing rationale for the distinctive work of National Hydrographic Offices as well as their developing relationships with other interested groups, not the least being publishers of commercial chart products

    Interdisciplinary (retail) research: The business of geography and the geography of business

    No full text
    NoAt the 2005 British Academy of Management conference several well-known economic geographers, including Neil Wrigley, Gordon Clark, and Susan Christopherson, called for management researchers to engage with economic geographers on interrelated geographical and managerial issues in the study of (retail) firms. In this commentary we reflect upon the present geography -management interface.We begin by considering the term `interdisciplinary research' and its relationship to any management - geography interface. This is followed by a context-specific discussion of international retailing and the role of research on the retail transnational corporation (TNC) in developing an interdisciplinary agenda. This commentary represents an initial more business and management focused response to the call from geography academics for more/better interdisciplinary research at the geography - management interface

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ⋆\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ⋆\sigma^\star remains unclear

    Theurapeutic Effectiveness of Rat Bone Marrow Stem Cells in Poly Cystic Ovary Syndrome Mice Model on Folliculogenesis, TGF-β, GDF-9 Expression, and Estrogen, TNF- and Androgen Levels

    Full text link
    Objectives: to identify therapeutic effectiveness of Rat Bone Marrow stem cell in PCOS rats model on folliculogenesis, TGF-beta and GDF-9 expression and on estrogen, TNF-a and androgen levels.Material and Methods: this study is a laboratory experimental research with using animal testing. PCOS was induced by the administration of testosterone propionate hormone into 30 mice. The subjects of this study are divided into 2 groups: stem cell group and control group. The mice were injected with testosterone then vaginal swab was performed to determine the mice cycle. After determining mice in anestrous cycle, stem cell was injected. TNF-a was measured with immunohistochemistry and androgen was examined using ELISA. The data was measured by student t-test.Result: The average number of TNF-a expression in control group was lower than stem cell group (5.35 vs 2.34; p= 0.0026). The average androgen level for stem cell group was lower than mean for control group (2.31 vs 0.40; p= 0.0026).Conclusion: In this study of polycystic model mice, stem cell decreased the expression of TNF-a and androgen leve

    Application of Natural and Modified Biomacromolecules in Miniaturised Separative Analytical Techniques

    Get PDF
    In pharmaceutical R & D, drug stereochemistry, and consequently the rotation of enantiomers, is very important. Because they act as chiral selectors in vivo, biomacromolecules have been extensively used as chiral selectors for the liquid chromatographic (LC) resolution of enantiomers and more latterly have also been employed in the newer separative technique, capillary electrophoresis (CE). However, at the outset of this research programme, this had generally been restricted to common easily accessible biomacromolecules such as plasma-binding proteins. It was clear that it be would be useful therefore to adapt LC and CE in such a way as would allow the use of a much wider range of biomacromolecules. Accordingly the general aim of this study was to develop LC and CE protocols involving biomacromolecules that would give rise to minimum consumption of the biomacromolecule. To study biomacromolecules in free solution CE, a number of experimental variables had to be established for both optimum chiral discrimination and for investigating biomacromolecule-ligand interactions. The typical and widely used biomacromolecule for chiral discrimination, bovine serum albumin (BSA) was used to study the variables of pH from pH 5.4 to 8.4, concentration of BSA form 0 to 60 M and concentration of organic modifiers in the range 0 – 20 % v/v for chiral selectivity. This involved an investigation into some unusual artefacts such as ghost peaks and stepped baselines, but ultimately the outcome was a successful free solution CE protocol suitable for the rapid evaluation of chiral discrimination of other biomacromolecules. The conditions were: run buffer (30 M protein, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v)), capillary CElect p150, 40 cm (35 cm to detector) x 50 m i.d., temperature of ambient or 25 C and an applied voltage of 10 kV. The ability of other biomacromolecules, such as human serum albumin (HSA), lactoferrin and protamine, to resolve enantiomers was studied using this protocol including looking at the effect of the addition of modifiers to the buffer such as metal ions like manganese and zinc, competing ligands, e.g. warfarin and ibuprofen, and -cyclodextrin. As well as using CE, miniaturisation of LC was also studied in view of the success of biomacromolecule-affinity chiral LC. Two different, but similar, microbore LC protocols were employed, i.e. using the protein in free solution or as a pseudo stationary phase. For the former, a Lichrosorb DIOL stationary phase, based on hydroxyl groups immobilised on silica, was chosen in order to minimise the adsorption of protein to the stationary phase. Using this protocol it was demonstrated that free solution microbore LC could be easily be carried out, therefore used to evaluate chiral discrimination and that the use of the system to study in vivo interactions was feasible. The creation of a biomacromolecule pseudo stationary phase, as opposed to conventional chiral stationary phases where the protein is permanently bonded to the stationary phases, involves the biomacromolecule being adsorbed within the pores of the stationary phase. In this way the overall biomacromolecule structure should not be grossly distorted. Three stationary phases were evaluated, viz wide-pore Nucleosil silica, Nucleosil C8 and Lichrosorb DIOL, for optimum biomacromolecule loading and minimal biomacromolecule leakage when mobile phase was pumped through the column. The Nucleosil silica with adsorbed BSA proved the most successful, e.g. of 3.6 and 4.0 for tryptophan and kynurenine respectively, and robust of the stationary phases with respect to demonstrating the chiral discrimination potential for this system. All the miniaturised systems evaluated were successful, to a greater or lesser degree, for the demonstration of chiral selectivity of biomacromolecules. While CE was better for minimisation of the consumption of the biomacromolecule, it was also important that the biomacromolecule LC systems could be operated in reduced dimensions since these systems have perhaps greater potential for exhibiting enantioselectivity and are more appropriate for the ever increasing need for the study of the interaction of ligands with the biomacromolecule in its ‘natural’ form. With the knowledge gained from this research programme it will now be possible to more easily carry out such studies with much smaller amounts of biomacromolecule, and, accordingly be able to work with biomacromolecules which hitherto it has not been possible to study because of limited availability. While some of the protocols have now been superseded by recent developments the system developed still has potential. The use of such small scale systems offers the potential to study chiral selectivity and drug-biomacromolecule binding of rare or expensive biomacromolecules
    • …
    corecore