2,009 research outputs found

    Venting of fission products and shielding in thermionic nuclear reactor systems

    Get PDF
    Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards

    Influence of High-Productivity Process Parameters on the Surface Quality and Residual Stress State of AISI 316L Components Produced by Directed Energy Deposition

    Get PDF
    The production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles

    Atomic layer deposited protective layers

    Get PDF
    This paper reviews the use of Atomic Layer Deposition (ALD) in protective coatings. Because of the growth principle ALD allows the deposition of dense conformal films on substrates of different size and shape. Recently, ALD has received increasingly interest in deposition of protective coatings. In protective coatings oxides are the most common materials and especially Al, Ti, and Ta oxides have been applied. The use of nanolaminates enables improving the protection properties. Since ALD films are pinhole-free and often thin they are used to protect against moisture, radiation, out-gassing but not often against corrosion of metals. Very good moisture barriers are obtained with thin ALD oxide layers on polymers and cardboard. This property is also very attractive in encapsulation of OLEDs. In studies of energy technology materials protection of electrodes in Li-ion batteries, fuel cells and supercapacitors by ALD has been reported and significant improvement in the stability has been achieved. Yet another area is protection of silver jewelry from tarnishing by a thin oxide layer. In traditional corrosion protection of metals ALD films have proven to be useful in tailoring of interfaces and sealing of defects in coatings made by other techniques. © 2017 Trans Tech Publications, Switzerland.Peer reviewe

    Abrasive fluidized bed finishing to improve the fatigue behaviour of Ti6Al4V parts fabricated by electron beam melting

    Get PDF
    A study of the abrasive fluidized bed (AFB) finishing process was conducted to quantify the obtainable improvement of the fatigue behaviour of Ti6Al4V parts produced by electron beam melting (EBM). Axial-symmetric EBM samples were rotated at high speed inside a fluidized bed of stainless-steel media. The effects of the treatment time and the rotational speed on morphological features and fatigue life of the EBM samples were investigated. Outcomes showed that the improvement in surface properties induced by the AFB finishing process determined an increase up to 50% in fatigue life and a shift of the S-N curve

    Microstructure and Residual Stress Evolution of Laser Powder Bed Fused Inconel 718 under Heat Treatments

    Get PDF
    The current work aimed to study the influence of various heat treatments on the microstructure, hardness, and residual stresses of Inconel 718 processed by laser powder bed fusion process. The reduction in residual stresses is crucial to avoid the deformation of the component during its removal from the building platform. Among the different heat treatments, 800 °C kept almost unaltered the original microstructure, reducing the residual stresses. Heat treatments at 900, 980, and 1065 °C gradually triggered the melt pool and dendritic structures dissolution, drastically reducing the residual stresses. Heat treatments at 900 and 980 °C involved the formation of δ phases, whereas 1065 °C generated carbides. These heat treatments were also performed on components with narrow internal channels revealing that heat treatments up to 900 °C did not trigger sintering mechanisms allowing to remove the powder from the inner channels

    Effects of external stream flow and afterbody variations on the performance of a plug nozzle

    Get PDF
    The off-design operation of an isentropic plug nozzle designed for a jet pressure ratio of 15 was investigated experimentally at subsonic Mach numbers up to 0.9 and jet pressure ratios up to 5. When installed in a cylindrical nacelle with a sharp turn at the nozzle lip, the interaction of the jet and the external stream produced low pressures on the base formed by the high lip angle. These low pressures increased the nacelle drag and caused an overexpansion of the jet, which resulted in lower pressures on the plug and, hence, reduced thrust. With a boattail ahead of the plug nozzle, the base pressures were increased and the jet overexpansion significantly reduced

    Kinematic Constraints on Formation of Bound States of Cosmic Strings - Field Theoretical Approach

    Full text link
    Superstring theory predicts the potential formation of string networks with bound states ending in junctions. Kinematic constraints for junction formation have been derived within the Nambu-Goto thin string approximation. Here we test these constraints numerically in the framework of the Abelian-Higgs model in the Type-I regime and report on good agreement with the analytical predictions. We also demonstrate that strings can effectively pass through each other when they meet at speeds slightly above the critical velocity permitting bound state formation. This is due to reconnection effects that are beyond the scope of the Nambu-Goto approximation.Comment: 6 pages, 12 eps figures - matches the published versio
    • …
    corecore