710 research outputs found

    MODELO BIDIMENSIONAL DE RIESGOS DEL MANTENIMIENTO DE SISTEMAS INTEGRADOS DE GESTIÓN (ERP)

    Get PDF
    La adopción y expansión de las Tecnologías de la Información y la Comunicación en el ámbito empresarial se está produciendo a gran velocidad. De la mano de las más innovadoras TIC y de los sistemas informáticos, surgen y se desarrollan los sistemas ERP. Éstos han sido implantados por empresas de todo el mundo. Tras su implantación, comienza su mantenimiento. Para que el resultado de estos proyectos sea satisfactorio, los riesgos que lo afectan tienen que ser gestionados. Una pobre gestión de estos riesgos, con frecuencia origina fallos en el sistema, lo que hace que las compañías tengan que asumir altas pérdidas. Para gestionar adecuadamente los riesgos, los profesionales deben comenzar identificándolos y clasificándolos. Para apoyar su labor, hemos realizado un estudio formal de los riesgos que afectan al mantenimiento de ERPs. La investigación finaliza con la elaboración de un Modelo de dos dimensiones compuesto por los riesgos identificados en la literatura

    Preliminary Study on the 3D Digitization of Millimeter Scale Products by Means of Photogrammetry

    Get PDF
    AbstractPhotogrammetry is a passive 3D digitization technique, mainly oriented to large sized objects, since its origins are in architectural and civil engineering. With the continuos development of digital imaging hardware and software, photogrammetric applications are involving smaller and smaller fields of view, with some critical aspects such as the depth of field getting narrower. In this conditions the lack of focus becomes important and affects heavily the possibility of accurately calibrate cameras. Bi-dimensional calibration patterns are affected by this problem when the camera principal axis has an angle with the pattern plane higher than a critical value. Moreover, the accuracy of the pattern, in terms of both shape and 3D positions of the targets, becomes critical decreasing the size of the pattern. In this paper the authors address these problems through a comparison of several calibration patterns included into the open source computer vision software library called OpenCV. 3D digitization of a small object is presented to test the best resulting calibration, using a consumer reflex camera equipped with macro lens and extension tube

    Nonlinear waves in a chain of magnetically coupled pendula

    Get PDF
    A motivation for the study of reduced models like one-dimensional systems in Solid State Physics is the complexity of the full problem. In recent years our group has studied theoretically, numerically and experimentally wave propagation in lattices of nonlinearly coupled oscillators. Here, we present the dynamics of magnetically coupled pendula lattices. These macroscopic systems can model the dynamical processes of matter or layered systems. We report the results obtained for harmonic wave propagation in these media, and the different regimes of mode conversion into higher harmonics strongly influenced by dispersion and discreteness, including the phenomenon of acoustic dilatation of the chain, as well as some results on the propagation of localized waves i.e., solitons and kinks.Generalitat Valenciana APOSTD/2017/042Umiversitat Politècnica de València PAID-01-14Ministerio de Economía y Competitividad (MINECO), Spain FIS2015-65998-C2-2-PJunta de Andalucía 2017/FQM-28

    Material-driven fibronectin assembly for high-efficiency presentation of growth factors

    Get PDF
    Growth factors (GFs) are powerful signaling molecules with the potential to drive regenerative strategies, including bone repair and vascularization. However, GFs are typically delivered in soluble format at supraphysiological doses because of rapid clearance and limited therapeutic impact. These high doses have serious side effects and are expensive. Although it is well established that GF interactions with extracellular matrix proteins such as fibronectin control GF presentation and activity, a translation-ready approach to unlocking GF potential has not been realized. We demonstrate a simple, robust, and controlled material-based approach to enhance the activity of GFs during tissue healing. The underlying mechanism is based on spontaneous fibrillar organization of fibronectin driven by adsorption onto the polymer poly(ethyl acrylate). Fibrillar fibronectin on this polymer, but not a globular conformation obtained on control polymers, promotes synergistic presentation of integrin-binding sites and bound bone morphogenetic protein 2 (BMP-2), which enhances mesenchymal stem cell osteogenesis in vitro and drives full regeneration of a nonhealing bone defect in vivo at low GF concentrations. This simple and translatable technology could unlock the full regenerative potential of GF therapies while improving safety and cost-effectiveness

    Engineered microenvironments for synergistic VEGF - integrin signalling during vascularization

    Get PDF
    We have engineered polymer-based microenvironments that promote vasculogenesis both in vitro and in vivo through synergistic integrin-growth factor receptor signalling. Poly(ethyl acrylate) (PEA) triggers spontaneous organization of fibronectin (FN) into nanonetworks which provide availability of critical binding domains. Importantly, the growth factor binding (FNIII12-14) and integrin binding (FNIII9-10) regions are simultaneously available on FN fibrils assembled on PEA. This material platform promotes synergistic integrin/VEGF signalling which is highly effective for vascularization events in vitro with low concentrations of VEGF. VEGF specifically binds to FN fibrils on PEA compared to control polymers (poly(methyl acrylate), PMA) where FN remains in a globular conformation and integrin/GF binding domains are not simultaneously available. The vasculogenic response of human endothelial cells seeded on these synergistic interfaces (VEGF bound to FN assembled on PEA) was significantly improved compared to soluble administration of VEGF at higher doses. Early onset of VEGF signalling (PLCγ1 phosphorylation) and both integrin and VEGF signalling (ERK1/2 phosphorylation) were increased only when VEGF was bound to FN nanonetworks on PEA, while soluble VEGF did not influence early signalling. Experiments with mutant FN molecules with impaired integrin binding site (FN-RGE) confirmed the role of the integrin binding site of FN on the vasculogenic response via combined integrin/VEGF signalling. In vivo experiments using 3D scaffolds coated with FN and VEGF implanted in the murine fat pad demonstrated pro-vascularization signalling by enhanced formation of new tissue inside scaffold pores. PEA-driven organization of FN promotes efficient presentation of VEGF to promote vascularization in regenerative medicine applications

    Towards a cloud‑based automated surveillance system using wireless technologies

    Get PDF
    Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.Ministerio de Economía y Competitividad TEC2016-77785-PJunta de Andalucía P12-TIC-130

    Preferences of Mexican anesthesiologists for vecuronium, rocuronium, or other neuromuscular blocking agents: a survey

    Get PDF
    BACKGROUND: Several neuromuscular blocking (NMB) agents are available for clinical use in anesthesia. The present study was performed in order to identify preferences and behaviors of anesthesiologists for using vecuronium, rocuronium or other NMB agents in their clinical practice. MATERIAL AND METHODS: The cross-sectional survey was applied at the Updated Course of the Colegio Mexicano de Anestesiología performed last year. Of 989, 282 (28.5%) surveys were returned. RESULTS: Most anesthesiologists were working at both public and private hospitals, performed anesthetic procedures for hospitalized and ambulatory patients, and anesthetized children as well as adults. Respondents did not consider mechanomyography as the gold standard method for neuromuscular monitoring. The T(25) was not recognized as a pharmacodynamic parameter that represents the clinical duration of the neuromuscular block. Most answered that vecuronium induces less histamine release than rocuronium, had never used any neuromuscular monitor, did not know the cost of vecuronium and rocuronium, and preferred rocuronium in multiple-sampling vials and vecuronium in either a vial for single or multiple sampling. Rocuronium was preferred for emergency surgery in patients with full stomach only. Almost all of anesthesiologists that conserve the unused drug did it without refrigeration and more than 30% conserve the unused drug in one syringe for further use. CONCLUSION: Vecuronium was preferred for most clinical situations, and the decision for this choice was not based on costs. Storage of unused drugs without refrigeration in a single syringe for purpose of future use in several patients represented a dangerous common practice

    Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

    Get PDF
    [EN] Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological-like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface-initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.The authors acknowledge the EPSRC (EP/P001114/1) and MRC (MR/S005412/1) funding. The authors also acknowledge the EPSRC funding as part of the Doctoral Training Centre EP/F500424/1. This work was also funded by a grant from the UK Regenerative Medicine Platform. X-ray photoelectron spectroscopy was conducted by the National EPSRC XPS Users' Service (NEXUS), Newcastle.Sprott, MR.; Ferrer, G.; Dalby, MJ.; Salmerón Sánchez, M.; Cantini, M. (2019). Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials (Online). 8(3):1-12. https://doi.org/10.1002/adhm.201801469S11283A. J. Rincon Lasprilla G. A. Rueda Martinez B. H. Lunelli J. E. Jaimes Figueroa A. L. Jardini R. Maciel Filho Chem. Eng. Trans 2011 985Khan, F., Tanaka, M., & Ahmad, S. R. (2015). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 3(42), 8224-8249. doi:10.1039/c5tb01370dXu, F. J., Yang, X. C., Li, C. Y., & Yang, W. T. (2011). Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP. Macromolecules, 44(7), 2371-2377. doi:10.1021/ma200160hKhan, F., & Tanaka, M. (2017). Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences, 19(1), 17. doi:10.3390/ijms19010017Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., & Turng, L. (2017). Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering, 13(1), 107-119. doi:10.1007/s11465-018-0496-8Zou, Y., Zhang, L., Yang, L., Zhu, F., Ding, M., Lin, F., … Li, Y. (2018). «Click» chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 273, 160-179. doi:10.1016/j.jconrel.2018.01.023Pyun, J., Kowalewski, T., & Matyjaszewski, K. (2005). Polymer Brushes by Atom Transfer Radical Polymerization. Polymer Brushes, 51-68. doi:10.1002/3527603824.ch2Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., & Kusumo, A. (2007). Grafting from Surfaces for «Everyone»:  ARGET ATRP in the Presence of Air. Langmuir, 23(8), 4528-4531. doi:10.1021/la063402eDatta, H., Bhowmick, A. K., & Singha, N. K. (2008). Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(15), 5014-5027. doi:10.1002/pola.22829Simakova, A., Averick, S. E., Konkolewicz, D., & Matyjaszewski, K. (2012). Aqueous ARGET ATRP. Macromolecules, 45(16), 6371-6379. doi:10.1021/ma301303bSiegwart, D. J., Oh, J. K., & Matyjaszewski, K. (2012). ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 37(1), 18-37. doi:10.1016/j.progpolymsci.2011.08.001Liu, P., & Su, Z. (2005). Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules. Carbohydrate Polymers, 62(2), 159-163. doi:10.1016/j.carbpol.2005.07.018Yu, Q., Johnson, L. M., & López, G. P. (2014). Nanopatterned Polymer Brushes for Triggered Detachment of Anchorage-Dependent Cells. Advanced Functional Materials, 24(24), 3751-3759. doi:10.1002/adfm.201304274Zhu, A., Zhang, M., Wu, J., & Shen, J. (2002). Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials, 23(23), 4657-4665. doi:10.1016/s0142-9612(02)00215-6Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 45(10), 4015-4039. doi:10.1021/ma3001719Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691Tsuji, H., Ogiwara, M., Saha, S. K., & Sakaki, T. (2006). Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(l-lactic acid):  Effects of Biaxial Orientation. Biomacromolecules, 7(1), 380-387. doi:10.1021/bm0507453He, Y., Wang, W., & Ding, J. (2013). Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. Chinese Science Bulletin, 58(20), 2404-2411. doi:10.1007/s11434-013-5798-yM. Cantini C. González‐García V. Llopis‐Hernández M. Salmerón‐Sánchez T. Horbett J. L. Brash W. Norde Proteins at Interfaces III State of the Art ACS Symposium Series 2012 American Chemical Society Washington DC USA 471 496Llopis-Hernández, V., Rico, P., Moratal, D., Altankov, G., & Salmerón-Sánchez, M. (2013). Role of Material-Driven Fibronectin Fibrillogenesis in Protein Remodeling. BioResearch Open Access, 2(5), 364-373. doi:10.1089/biores.2013.0017Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057Vanterpool, F. A., Cantini, M., Seib, F. P., & Salmerón-Sánchez, M. (2014). A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 3(6), 286-296. doi:10.1089/biores.2014.0033Bathawab, F., Bennett, M., Cantini, M., Reboud, J., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 32(3), 800-809. doi:10.1021/acs.langmuir.5b03259Lozano Picazo, P., Pérez Garnes, M., Martínez Ramos, C., Vallés-Lluch, A., & Monleón Pradas, M. (2014). New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience, 15(2), 229-240. doi:10.1002/mabi.201400331Schulz, A. S., Gojzewski, H., Huskens, J., Vos, W. L., & Julius Vancso, G. (2017). Controlled sub-10-nanometer poly(N -isopropyl-acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polymers for Advanced Technologies, 29(2), 806-813. doi:10.1002/pat.4187Müllner, M., Dodds, S. J., Nguyen, T.-H., Senyschyn, D., Porter, C. J. H., Boyd, B. J., & Caruso, F. (2015). Size and Rigidity of Cylindrical Polymer Brushes Dictate Long Circulating Properties In Vivo. ACS Nano, 9(2), 1294-1304. doi:10.1021/nn505125fKreyling, W. G., Abdelmonem, A. M., Ali, Z., Alves, F., Geiser, M., Haberl, N., … Parak, W. J. (2015). In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 10(7), 619-623. doi:10.1038/nnano.2015.111Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(8), 2506-2519. doi:10.1016/j.bbagen.2014.01.010Hay, J. J., Rodrigo-Navarro, A., Hassi, K., Moulisova, V., Dalby, M. J., & Salmeron-Sanchez, M. (2016). Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Scientific Reports, 6(1). doi:10.1038/srep21809Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. Biomacromolecules, 3(6), 1312-1319. doi:10.1021/bm020074yMacDonald, R. T., McCarthy, S. P., & Gross, R. A. (1996). Enzymatic Degradability of Poly(lactide):  Effects of Chain Stereochemistry and Material Crystallinity. Macromolecules, 29(23), 7356-7361. doi:10.1021/ma960513jTokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology, 72(2), 244-251. doi:10.1007/s00253-006-0488-1Hu, X., Su, T., Li, P., & Wang, Z. (2017). Blending modification of PBS/PLA and its enzymatic degradation. Polymer Bulletin, 75(2), 533-546. doi:10.1007/s00289-017-2054-7Gee, E. P. S., Yüksel, D., Stultz, C. M., & Ingber, D. E. (2013). SLLISWD Sequence in the 10FNIII Domain Initiates Fibronectin Fibrillogenesis. Journal of Biological Chemistry, 288(29), 21329-21340. doi:10.1074/jbc.m113.462077Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558-569. doi:10.1038/nmat3980Neděla, O., Slepička, P., & Švorčík, V. (2017). Surface Modification of Polymer Substrates for Biomedical Applications. Materials, 10(10), 1115. doi:10.3390/ma10101115Ngandu Mpoyi, E., Cantini, M., Reynolds, P. M., Gadegaard, N., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 10(7), 6638-6647. doi:10.1021/acsnano.6b01649Cantini, M., Rico, P., Moratal, D., & Salmerón-Sánchez, M. (2012). Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 8(20), 5575. doi:10.1039/c2sm25413aChu, P. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206. doi:10.1016/s0927-796x(02)00004-9Zoppe, J. O., Ataman, N. C., Mocny, P., Wang, J., Moraes, J., & Klok, H.-A. (2017). Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews, 117(3), 1105-1318. doi:10.1021/acs.chemrev.6b00314Yasuda, H., & Yasuda, T. (2000). The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment. Journal of Polymer Science Part A: Polymer Chemistry, 38(6), 943-953. doi:10.1002/(sici)1099-0518(20000315)38:63.0.co;2-3Ma, H., Textor, M., Clark, R. L., & Chilkoti, A. (2006). Monitoring kinetics of surface initiated atom transfer radical polymerization by quartz crystal microbalance with dissipation. Biointerphases, 1(1), 35-39. doi:10.1116/1.2190697Ohno, S., & Matyjaszewski, K. (2006). Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44(19), 5454-5467. doi:10.1002/pola.21669Kang, C., Crockett, R. M., & Spencer, N. D. (2013). Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces. Macromolecules, 47(1), 269-275. doi:10.1021/ma401951wXiao, D., & Wirth, M. J. (2002). Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules, 35(8), 2919-2925. doi:10.1021/ma011313xShinoda, H., & Matyjaszewski, K. (2001). Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 34(18), 6243-6248. doi:10.1021/ma0105791Xu, F. J., Zhao, J. P., Kang, E. T., & Neoh, K. G. (2007). Surface Functionalization of Polyimide Films via Chloromethylation and Surface-Initiated Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 46(14), 4866-4873. doi:10.1021/ie0701367Zhou, T., Qi, H., Han, L., Barbash, D., & Li, C. Y. (2016). Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nature Communications, 7(1). doi:10.1038/ncomms11119Guo, W., Zhu, J., Cheng, Z., Zhang, Z., & Zhu, X. (2011). Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces, 3(5), 1675-1680. doi:10.1021/am200215xIgnatova, M., Voccia, S., Gilbert, B., Markova, N., Mercuri, P. S., Galleni, M., … Jérôme, C. (2004). Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir, 20(24), 10718-10726. doi:10.1021/la048347tTaran, E., Donose, B., Higashitani, K., Asandei, A. D., Scutaru, D., & Hurduc, N. (2006). ATRP grafting of styrene from benzyl chloride functionalized polysiloxanes: An AFM and TGA study of the Cu(0)/bpy catalyst. European Polymer Journal, 42(1), 119-125. doi:10.1016/j.eurpolymj.2005.06.030Liu, F., Du, C.-H., Zhu, B.-K., & Xu, Y.-Y. (2007). Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer, 48(10), 2910-2918. doi:10.1016/j.polymer.2007.03.033Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259Saito, E., Liao, E. E., Hu, W., Krebsbach, P. H., & Hollister, S. J. (2011). Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. Journal of Tissue Engineering and Regenerative Medicine, 7(2), 99-111. doi:10.1002/term.497Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 6(1). doi:10.1038/srep20770Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 95(11), 2126-2146. doi:10.1016/j.polymdegradstab.2010.06.007Cantini, M., Gomide, K., Moulisova, V., González-García, C., & Salmerón-Sánchez, M. (2017). Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks. Advanced Biosystems, 1(9), 1700047. doi:10.1002/adbi.201700047Pelta, J., Berry, H., Fadda, G. C., Pauthe, E., & Lairez, D. (2000). Statistical Conformation of Human Plasma Fibronectin. Biochemistry, 39(17), 5146-5154. doi:10.1021/bi992770xGugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203P. Rico Tortosa M. Cantini G. Altankov M. Salmeron‐Sanchez M. Monleón Pradas M. J. Vicent Polymers in Regenerative Medicine: Biomedical Applications from Nano‐ to Macro‐Structures 2014 John Wiley & Sons Inc Hoboken New Jersey 91 146Schwarzbauer, J. E., & DeSimone, D. W. (2011). Fibronectins, Their Fibrillogenesis, and In Vivo Functions. Cold Spring Harbor Perspectives in Biology, 3(7), a005041-a005041. doi:10.1101/cshperspect.a005041Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100), 100ra89-100ra89. doi:10.1126/scitranslmed.3002614Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102Llopis-Hernández, V., Cantini, M., González-García, C., Cheng, Z. A., Yang, J., Tsimbouri, P. M., … Salmerón-Sánchez, M. (2016). Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2(8), e1600188. doi:10.1126/sciadv.1600188Ballester-Beltrán, J., Moratal, D., Lebourg, M., & Salmerón-Sánchez, M. (2014). Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate. Biomater. Sci., 2(3), 381-389. doi:10.1039/c3bm60248fRedick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378-379. doi:10.1038/nsmb908Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., & Sellers, J. R. (2004). Mechanism of Blebbistatin Inhibition of Myosin II. Journal of Biological Chemistry, 279(34), 35557-35563. doi:10.1074/jbc.m405319200Cai, Y., Rossier, O., Gauthier, N. C., Biais, N., Fardin, M.-A., Zhang, X., … Sheetz, M. P. (2010). Cytoskeletal coherence requires myosin-IIA contractility. Journal of Cell Science, 123(3), 413-423. doi:10.1242/jcs.058297González-García, C., Moratal, D., Oreffo, R. O. C., Dalby, M. J., & Salmerón-Sánchez, M. (2012). Surface mobility regulates skeletal stem cell differentiation. Integrative Biology, 4(5), 531. doi:10.1039/c2ib00139jHorzum, U., Ozdil, B., & Pesen-Okvur, D. (2014). Step-by-step quantitative analysis of focal adhesions. MethodsX, 1, 56-59. doi:10.1016/j.mex.2014.06.004Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018Leahy, D. J., Aukhil, I., & Erickson, H. P. (1996). 2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region. Cell, 84(1), 155-164. doi:10.1016/s0092-8674(00)81002-

    Reduction of Irrelevant Features in Oceanic Satellite Images by means of Bayesian Networks

    Get PDF
    This paper describes the use of Bayesian networks for the reduction of irrelevant features [1,2] in the recognition of oceanic structures in satellite images. Bayesian networks are used to validate the symbolic knowledge -provided by neuro symbolic or HLKPs (High Level Knowledge Processors) nets- and the numeric knowledge. This provides an automatic interpretation of images. The main objective of this work is the construction of an automatic recognition system for processing AVHRR (Advanced Very High Resolution Radiometer) images from NOAA (National Oceanographic and Atmospheric Administration) satellites to detect and locate oceanic phenomena of interest like upwellings, eddies and island wakes. With this aim, this paper reports on a methodology of knowledge selection and validation. In knowledge selection, filter measures are used. For knowledge validation, Bayesian networks (Naïve Bayes, TAN and KDB) are evaluated

    The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - A review

    Get PDF
    [EN] Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future.We acknowledge support from the Leverhulme Trust through gran t RPG-2019-252 and the Engineering and Physical Sciences Research Council (EPSRC) grant EP/P001114/1.Luo, J.; Walker, M.; Xiao, Y.; Donnelly, H.; Dalby, MJ.; Salmerón Sánchez, M. (2022). The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - A review. Bioactive materials. 15:145-159. https://doi.org/10.1016/j.bioactmat.2021.11.0241451591
    corecore