591 research outputs found

    Variation in zero plane displacement and roughness length for momentum revisited

    Get PDF
    Zero plane displacement height (d0) and momentum roughness length (z0m), describe the aerodynamic characteristics of a vegetated surface. Usually, d0 and z0m are assumed to be constant functions of the physical characteristics of the surface. Prior evidence collected from the literature and our examination of flux tower data show that d0 and z0m vary in time at sites with tree and shrub canopies, but not grasslands. The conventional explanations of these variations are based on linear functions of wind velocity and friction velocity, with little theoretical basis. This study explains the variation in aerodynamic parameters by matching four analytical canopy velocity models to a logarithmic above-canopy velocity profile at canopy height. d0 and z0m come out as functions of 2 non-dimensional terms, the canopy momentum absorption capacity (parameter) and a (measurable) Péclet number. To test the theories of variation, we analysed the velocity profiles from Ozflux and Ameriflux sites. None of the theories could recreate d0 and z0m at half-hourly intervals. However, the canopy velocity models were able better to recreate the distribution of the variations in d0 and z0m. Additionally, the estimates of canopy momentum absorption capacity varied consistently with phenological changes in the canopies, whereas, the fitting parameters of the linear regression of using wind speed and friction velocity did not exhibit physically interpretable variations. The canopy velocity models may offer better predictions with an accurate estimation of the canopy height, a horizontally homogeneous and rigid canopy, and incorporation of the roughness sublayer

    Multiple mechanisms generate Lorentzian and 1/f a power spectra in daily stream-flow time series

    Get PDF
    a b s t r a c t Power-law scaling is an ubiquitous feature of the power spectrum of streamflow on the daily to monthly timescales where the spectrum is most strongly affected by hydrologic catchment-scale processes. Numerous mechanistic explanations for the emergence of this power-law scaling have been proposed. This study employs empirical spectra obtained for eight river basins in the South Eastern US and synthetic spectra generated from a range of proposed mechanisms to explore these explanations. The empirical analysis suggested that streamflow spectra were characterized by multiple power-law scaling regimes with high-frequency exponents a in the range À1 to À5. In the studied basins, a tended to increase with drainage area. The power-law generating mechanisms analyzed included linear and nonlinear catchment water balance arguments, power-law recession behavior, autonomous and non-autonomous responses of channel hydraulics and the n-fold convolution of linear reservoirs underpinning Dooge or Nash hydrographs. Of these mechanisms, only n-fold convolutions with n = 2 or 3 generated power spectra with features that were consistent with the empirical cases. If the effects of daily streamflow sampling on truncating power spectra were considered, then the trends in a with drainage area were also consistent with this mechanism. Generalizing the linear convolution approach to a network of reservoirs with randomly distributed parameters preserved the features of the power spectrum and maintained consistency with empirical spectra

    Multiple mechanisms generate Lorentzian and 1/f a power spectra in daily stream-flow time series

    Get PDF
    a b s t r a c t Power-law scaling is an ubiquitous feature of the power spectrum of streamflow on the daily to monthly timescales where the spectrum is most strongly affected by hydrologic catchment-scale processes. Numerous mechanistic explanations for the emergence of this power-law scaling have been proposed. This study employs empirical spectra obtained for eight river basins in the South Eastern US and synthetic spectra generated from a range of proposed mechanisms to explore these explanations. The empirical analysis suggested that streamflow spectra were characterized by multiple power-law scaling regimes with high-frequency exponents a in the range À1 to À5. In the studied basins, a tended to increase with drainage area. The power-law generating mechanisms analyzed included linear and nonlinear catchment water balance arguments, power-law recession behavior, autonomous and non-autonomous responses of channel hydraulics and the n-fold convolution of linear reservoirs underpinning Dooge or Nash hydrographs. Of these mechanisms, only n-fold convolutions with n = 2 or 3 generated power spectra with features that were consistent with the empirical cases. If the effects of daily streamflow sampling on truncating power spectra were considered, then the trends in a with drainage area were also consistent with this mechanism. Generalizing the linear convolution approach to a network of reservoirs with randomly distributed parameters preserved the features of the power spectrum and maintained consistency with empirical spectra

    High Time for Conservation: Adding the Environment to the Debate on Marijuana Liberalization

    Get PDF
    The liberalization of marijuana policies, including the legalization of medical and recreational marijuana, is sweeping the United States and other countries. Marijuana cultivation can have significant negative collateral effects on the environment that are often unknown or overlooked. Focusing on the state of California, where by some estimates 60% -- 70% of the marijuana consumed in the United States is grown, we argue that (a) the environmental harm caused by marijuana cultivation merits a direct policy response, (b) current approaches to governing the environmental effects are inadequate, and (c) neglecting discussion of the environmental impacts of cultivation when shaping future marijuana use and possession policies represents a missed opportunity to reduce, regulate, and mitigate environmental harm

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Dry season streamflow persistence in seasonal climates

    Full text link
    Seasonally dry ecosystems exhibit periods of high water availability followed by extended intervals during which rainfall is negligible and streamflows decline. Eventually, such declining flows will fall below the minimum values required to support ecosystem functions or services. The time at which dry season flows drop below these minimum values (Q∗), relative to the start of the dry season, is termed the "persistence time" (). The persistence time determines how long seasonal streams can support various human or ecological functions during the dry season. In this study, we extended recent work in the stochastic hydrology of seasonally dry climates to develop an analytical model for the probability distribution function (PDF) of the persistence time. The proposed model accurately captures the mean of the persistence time distribution, but underestimates its variance. We demonstrate that this underestimation arises in part due to correlation between the parameters used to describe the dry season recession, but that this correlation can be removed by rescaling the flow variables. The mean persistence time predictions form one example of the broader class of streamflow statistics known as crossing properties, which could feasibly be combined with simple ecological models to form a basis for rapid risk assessment under different climate or management scenarios

    Introducing pour points: Characteristics and hydrological significance of a rainfall-concentrating mechanism in a water-limited woodland ecosystem

    Get PDF
    The interception of rainfall by plant canopies alters the depth and spatial distribution of water arriving at the soil surface, and thus the location, volume, and depth of infiltration. Mechanisms like stemflow are known to concentrate rainfall and route it deep into the soil, yet other mechanisms of flow concentration are poorly understood. This study characterizes pour points, formed by the detachment of water flowing under a branch, using a combination of field observations in Western Australian banksia woodlands and rainfall simulation experiments on Banksia menziesii branches. We aim to establish the hydrological significance of pour points in a water-limited woodland ecosystem, along with the features of the canopy structure and rainfall that influence pour point formation and fluxes. Pour points were common in the woodland and could be identified by visually inspecting trees. Throughfall depths at pour points were up to 15 times greater than rainfall and generally comparable to or greater than stemflow. Soil water content beneath pour points was greater than in adjacent controls, with 20%–30% of the seasonal rainfall volume infiltrated into the top 1 m of soil beneath pour points, compared to 5% in controls. Rainfall simulations showed that pour points amplified the spatial heterogeneity of throughfall, violating assumptions used to close the water balance. The simulation experiments demonstrated that pour point fluxes depend on the interaction of branch angle and foliation for a given branch architecture. Pour points can play a significant part in the water balance, depending on their density and rainfall concentration ability

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Natural and cultural heritage in mountain landscapes: towards an integrated valuation

    Get PDF
    Mountain areas of Europe have been managed by humans for a long time, leading to a prevalence of semi-natural habitats in mountain landscapes today. These landscapes contain both natural and cultural heritage; however, natural and cultural heritage are rarely considered together when valuing landscapes and developing management plans in protected areas. Here we present a case study of seven protected areas in the mountains of Great Britain and Norway. We take a long-term perspective on landscape and land-use change and propose an integrated model of landscape valuation on the basis of combined natural and cultural heritage. Our model plots indicators of natural and cultural heritage along a gradient of land-use intensity, allowing simultaneous assessment and highlighting how valuation depends on what type of heritage is considered. We show that while contemporary land-use changes follow similar trajectories in Norway and Britain, different land-use histories mean that the loss of heritage differs between the regions. The model presented here thus allows for the consolidation of valuation based on both cultural and natural heritage in landscapes.publishedVersio
    • …
    corecore