216 research outputs found

    Main memory in HPC: do we need more, or could we live with less?

    Get PDF
    An important aspect of High-Performance Computing (HPC) system design is the choice of main memory capacity. This choice becomes increasingly important now that 3D-stacked memories are entering the market. Compared with conventional Dual In-line Memory Modules (DIMMs), 3D memory chiplets provide better performance and energy efficiency but lower memory capacities. Therefore, the adoption of 3D-stacked memories in the HPC domain depends on whether we can find use cases that require much less memory than is available now. This study analyzes the memory capacity requirements of important HPC benchmarks and applications. We find that the High-Performance Conjugate Gradients (HPCG) benchmark could be an important success story for 3D-stacked memories in HPC, but High-Performance Linpack (HPL) is likely to be constrained by 3D memory capacity. The study also emphasizes that the analysis of memory footprints of production HPC applications is complex and that it requires an understanding of application scalability and target category, i.e., whether the users target capability or capacity computing. The results show that most of the HPC applications under study have per-core memory footprints in the range of hundreds of megabytes, but we also detect applications and use cases that require gigabytes per core. Overall, the study identifies the HPC applications and use cases with memory footprints that could be provided by 3D-stacked memory chiplets, making a first step toward adoption of this novel technology in the HPC domain.This work was supported by the Collaboration Agreement between Samsung Electronics Co., Ltd. and BSC, Spanish Government through Severo Ochoa programme (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under ExaNoDe project (grant agreement No 671578). Darko Zivanovic holds the Severo Ochoa grant (SVP-2014-068501) of the Ministry of Economy and Competitiveness of Spain. The authors thank Harald Servat from BSC and Vladimir Marjanovi´c from High Performance Computing Center Stuttgart for their technical support.Postprint (published version

    Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis

    Get PDF
    Cited2 is a transcriptional modulator with pivotal roles in different biological processes. Cited2-deficient mouse embryos manifested two major defects in the developing eye. An abnormal corneal-lenticular stalk was characteristic of Cited2(−/−) developing eyes, a feature reminiscent of Peters’ anomaly, which can be rescued by increased Pax6 gene dosage in Cited2(−/−) embryonic eyes. In addition, the hyaloid vascular system showed hyaloid hypercellularity consisting of aberrant vasculature, which might be correlated with increased VEGF expression in the lens. Deletion of Hif1a (which encodes HIF-1α) in Cited2(−/−) lens specifically eliminated the excessive accumulation of cellular mass and aberrant vasculature in the developing vitreous without affecting the corneal-lenticular stalk phenotype. These in vivo data demonstrate for the first time dual functions for Cited2: one upstream of, or together with, Pax6 in lens morphogenesis; and another in the normal formation of the hyaloid vasculature through its negative modulation of HIF-1 signaling. Taken together, our study provides novel mechanistic revelation for lens morphogenesis and hyaloid vasculature formation and hence might offer new insights into the etiology of Peters’ anomaly and ocular hypervascularity

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Caregiver perceptions of children who have complex communication needs following a home-based intervention using augmentative and alternative communication in rural Kenya: an intervention note:Home-based intervention using AAC in rural Kenya

    Get PDF
    A high level of unmet communication need exists amongst children with developmental disabilities in sub-Saharan Africa. This study investigated preliminary evidence of the impact associated with a home-based, caregiver-implemented intervention employing AAC methods, with nine children in rural Kenya who have complex communication needs. The intervention used mainly locally-sourced low-tech materials, and was designed to make use of the child's strengths and the caregiver's natural expertise. A pretest-posttest design was used in the study. Data were gathered using an adapted version of the Communication Profile, which was based on the International Classification of Functioning, Disability, and Health (ICF) framework. The non-parametric Wilcoxon signed-rank test was applied to data from the first two sections of the Communication Profile-Adapted. Qualitative analysis was conducted on the final section. The data provided evidence of statistically significant positive changes in caregiver perceptions of communication at the levels of Body Structure and Function, and Activities for Communication. Also, analysis of the Participation for Communication section revealed some expansion to the children's social activities. The potential impact of the home-based intervention would benefit from investigation on a larger scale. Limitations of the study are discussed

    TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development

    Get PDF
    TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal
    corecore