8 research outputs found

    SiNERGY, a project on energy harvesting and microstorage empowered by Silicon technologies

    Get PDF
    Internet of Things and Trillion Sensors are buzzwords illustrating the path towards the next grand paradigm: Smart Everywhere. In many of those realizations long term autonomy of sensor systems is a must to tackle different societal challenges and innovation scenarios. Microenergy autonomy solutions based on energy harvesting offer a promising way in which, KETS mediated, silicon technology and silicon friendly materials may play a decisive role.This work was supported by FP7- NMP-2013-SMALL-7, SiNERGY (Silicon Friendly Materials and Device Solutions for Microenergy Applications), Contract n. 604169Peer reviewe

    Dynamic compact thermal models with multiple power sources: application to an ultrathin chip stacking technology

    Get PDF
    Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Each individual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS)

    Membrana electrolítica de óxido sólido soportada sobre nervios de silicio dopado para aplicaciones en micropilas de combustible de óxido sólido

    Get PDF
    La presente invención se refiere a una pila de combustible de oxido solido que consta de: (a) un sustrato con al menos una cavidad para formar una membrana; (b) una membrana electrolítica basada en una capa delgada de un oxido solido de más de 5 nm pero menos de 5 um de grosor , cubriendo la cavidad formada en el sustrato; (c) una red de nervios de silicio dopado cruzando la cavidad, justo por debajo de la membrana electrolítica, de forma que sirvan como soporte del electrolito; los nervios de silicio determinan membranas electrolíticas singulares de un tamaño siempre mayor que el grosor de los nervios, las cuales sumadas forman la membrana electrolítica de gran superficie; y (d) dos capas finas que actúan como electrodos, depositadas una a cada lado de la citada membrana electrolítica. Asimismo, es objeto de la invención el método para fabricar dicha pila de combustiblePeer reviewedConsejo Superior de Investigaciones Científicas, Fundació Institut de Recerca de Energía de CatalunyaA1 Solicitud de patente con informe sobre el estado de la técnic

    Interdigitated design of a thermoelectric microgenerator based on silicon nanowire arrays

    Get PDF
    Proceedings Volume 9517, Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems; 95172C (2015).-- Event: SPIE Microtechnologies, 2015, Barcelona, Spain.Silicon nanowires thermoelectric properties are much better than those of silicon bulk. Taking advantage of silicon microfabrication techniques and compatibilizing the device fabrication with the CVD-VLS silicon nanowire growth, we present a thermoelectric microgenerator based on silicon nanowire arrays with interdigitated structures which enhance the power density compared to previous designs presented by the authors. The proposed design features a thermally isolated silicon platform on the silicon device layer of an SOI silicon wafer. This silicon platform has vertical walls exposing planes where gold nanoparticles are deposited by galvanic displacement. These gold nanoparticles act as seeds for the silicon nanowires. The growth takes place in a CVD with silane precursor, and uses the Vapor-Solid-Liquid synthesis. Once the silicon nanowires are grown, they connect the silicon platform with the silicon bulk. The proposed thermoelectric generator is unileg, which means that only one type of semiconductor is used, and the second connection is made through a metal. In addition, to improve the thermal isolation of the silicon platform, multiple trenches of silicon nanowire arrays are used, up to a maximum of nine. After packaging the device with nanowires, we are able to measure the Seebeck voltage and the power obtained with different operation modes: harvesting mode, where the bottom device is heated up, and the silicon platform is cooled down by natural or forced convection, and test mode, where a heater integrated on the silicon platform is used to produce a thermal gradient.This work has been supported by FP7–NMP–2013–SMALL–7, SiNERGY (Silicon Friendly Materials and Device Solutions for Microenergy Applications) Project, Contract n. 604169. One of the authors (C.C.) acknowledges a Ramón y Cajal research grant.SíPublisher's versio

    Sensor electroquímico de estado sólido y procedimiento para su fabricación

    Get PDF
    Sensor electroquímico integrado de estado sólido (S) que comprende un primer electrodo (1) en contacto con un primer volumen libre (V1), un segundo electrodo (2) con un segundo volumen libre (V2), un electrolito sólido (3), una estructura de soporte del electrolito, estando los electrodos (1, 2) en contacto con el electrolito (3), un amperímetro o un voltímetro conectado entre los electrodos (1, 2), en el que el primer (V1) y/o el segundo (V2) volumen es susceptible de contener un gas cuya concentración se quiere medir, en el que el electrolito (3) es una membrana de zirconia estabilizada con itria, la estructura (4) es de silicio micromecanizado provista de al menos un orificio atravesante y la membrana (3) está fijada a la estructura de modo que cubre el orificio.Peer reviewedInstitut de Recerca en Energía de Catalunya, Consejo Superior de Investigaciones Científicas, Universitat de BarcelonaA1 Solicitud de adición a la patent

    Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices

    No full text
    One-dimensional (1D) nanowire structures have been shown to be promising candidates for enhancing the thermoelectric properties of semiconductor materials. This paper goes beyond single nanowire characterization and reports on the implementation of multiple electrically connected dense arrays of well-oriented and size-controlled silicon nanowires (Si NWs) grown by the CVD-VLS mechanism into microfabricated structures to develop thermoelectric microgenerators (οTEGs). Low thermal mass suspended silicon structures have been designed and microfabricated to naturally generate thermal gradients in planar microthermoelements. The hot and cold parts of the device are linked with horizontal arrays of Si NWs growth by a single bottom-up process. In order to improve the performance of the device as energy harvester, the successive linkage of multiple Si NW arrays has been developed to generate larger temperature differences while preserving a good electrical contact that allows keeping small internal thermoelement resistances. The fabricated thermoelements have shown Seebeck voltages up to 60mV and generated power densities up to 1.44mW/cm 2 for ΔT=300°C and, working as energy harvesters, a maximum Seebeck voltage of 4.4mV and a generated power density of 9οW/cm 2 for ΔT=27°C (across the nanowires) in a single thermoelement. The fabricated microgenerator, taking advantage of the simple planar geometry and compatibility with silicon technology, provides an alternative to the state-of-the-art οTEGs based on non-integrable and scarce V-VI semiconductor materials and a promising energy harvester for advanced micro/nanosystems. © 2012 Elsevier Ltd.The research at IREC was supported by European Regional Development Founds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). Moreover, this investigation has been supported by the Spanish Ministry of Economy and Competitiveness (TEC-2008-03255-E and TEC-2010-20844-E) and the “Generalitat de Catalunya” (Advanced Materials for Energy Network (XaRMAE), 2009-SGR-440). A. Tarancón and C. Calaza would like to thank the financial support of the Ramón y Cajal postdoctoral program of the Spanish Ministry of Economy and Competitiveness. M. Salleras would like to acknowledge the JAE-Doc contract with CSIC co-financed by the European Social Fund (FSE). D. Dávila would like to thank the financial support granted by the Spanish MAEC-AECID fellowship program.Peer Reviewe

    Improved thermal behavior of multiple linked arrays of silicon nanowires integrated into planar thermoelectric microgenerators

    No full text
    Low-dimensional structures have been shown to be promising candidates for enhancing the thermoelectric properties of semiconductors, paving the way for integration of thermoelectric generators into silicon microtechnology. With this aim, dense arrays of well-oriented and size-controlled silicon nanowires (Si NWs) obtained by the chemical vapor deposition (CVD)-vapor-liquid-solid (VLS) mechanism have been implemented into microfabricated structures to develop planar unileg thermoelectric microgenerators (μTEGs). Different low-thermal-mass suspended structures have been designed and microfabricated on silicon-on-insulator (SOI) substrates to operate as microthermoelements using p-type Si NW arrays as the thermoelectric material. To obtain nanowire arrays with effective lengths larger than normally attained by the VLS technique, structures composed of multiple ordered arrays consecutively bridged by transversal microspacers have been fabricated. The successive linkage of multiple Si NW arrays enabled the development of larger temperature differences while preserving good electrical contact. This gives rise to small internal thermoelement resistances, enhancing the performance of the devices as energy harvesters. © 2013 TMS.This investigation has been supported by the Spanish Ministry of Economy and Competitiveness (TEC-2008-03255-E and TEC-2010-20844-E) and the Generalitat de Catalunya [Advanced Materials for Energy Network (XaRMAE), 2009-SGR-440]. A. Tarancón and C. Calaza would like to acknowledge the financial support of the Ramón y Cajal postdoc-toral program of the Spanish Ministry of Economy and Competitiveness. M. Salleras would like to acknowledge the JAE-Doc contract with CSIC cofinanced by the European Social Fund (FSE). D. Dávila would like to acknowledge the financial support granted by the Spanish MAEC-AECID fellowship program.Peer Reviewe

    Sensor electroquímico de estado sólido y procedimiento para su fabricación

    No full text
    Sensor electroquímico integrado de estado sólido (S) que comprende un primer electrodo (1) en contacto con un primer volumen libre (V1), un segundo electrodo (2) con un segundo volumen libre (V2), un electrolito sólido (3), una estructura de soporte del electrolito, estando los electrodos (1, 2) en contacto con el electrolito (3), un amperímetro o un voltímetro conectado entre los electrodos (1, 2), en el que el primer (V1) y/o el segundo (V2) volumen es susceptible de contener un gas cuya concentración se quiere medir, en el que el electrolito (3) es una membrana de zirconia estabilizada con itria, la estructura (4) es de silicio micromecanizado provista de al menos un orificio atravesante y la membrana (3) está fijada a la estructura de modo que cubre el orificio.Peer reviewedInstitut de Recerca en Energía de Catalunya, Consejo Superior de Investigaciones Científicas, Universitat de BarcelonaB1 Patente sin examen previ
    corecore