18 research outputs found
The proton pumping pathway of bovine heart cytochrome c oxidase
X-ray structures of bovine heart cytochrome c oxidase have suggested that the enzyme, which reduces O(2) in a process coupled with a proton pumping process, contains a proton pumping pathway (H-pathway) composed of a hydrogen bond network and a water channel located in tandem across the enzyme. The hydrogen bond network includes the peptide bond between Tyr-440 and Ser-441, which could facilitate unidirectional proton transfer. Replacement of a possible proton-ejecting aspartate (Asp-51) at one end of the H-pathway with asparagine, using a stable bovine gene expression system, abolishes the proton pumping activity without influencing the O(2) reduction function. Blockage of either the water channel by a double mutation (Val386Leu and Met390Trp) or proton transfer through the peptide by a Ser441Pro mutation was found to abolish the proton pumping activity without impairment of the O(2) reduction activity. These results significantly strengthen the proposal that H-pathway is involved in proton pumping
Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications
Antiferroelectric (AFE) materials are of great interest owing to their scientific richness and their utility in high energy density capacitors. Here, the history of AFEs is reviewed, and the characteristics of antiferroelectricity and the phase transition of an AFE material are described. AFEs are energetically close to ferroelectric (FE) phases, and thus both the electric field strength and applied stress (pressure) influence the nature of the transition. With the comparable energetics between the AFE and FE phases, there can be a competition and frustration of these phases, and either incommensurate (INC) and/or a glassy (relaxor) structures may be observed. The phase transition in AFEs can also be influenced by the crystal/grain size, particularly at nanometric dimensions, and may be tuned through the formation of solid solutions. There have been extensive studies on the perovskite family of AFE materials, but many other crystal structures host AFE behavior, such as CuBiP2Se6. AFE applications include DC‐link capacitors for power electronics, defibrillator capacitors, pulse power devices, and electromechanical actuators. The paper concludes with a perspective on the future needs and opportunities with respect to discovery, science, and applications of AFE