160 research outputs found

    Effects of age on strength and morphology of toe flexor muscles

    Get PDF
    Study Design: Cross-sectional. 27 Objective: To compare the strength and size of the toe flexor muscles of older adults relative 28 to their younger counterparts. 29 Background: Age related muscle atrophy is common in lower limb muscles and we therefore 30 speculated that foot muscles also diminish with age. However, there is a paucity of literature 31 characterizing foot muscle strength and morphology, and any relationship between these two, 32 in older people. 33 Methods: Seventeen young adults with a normal foot type were matched by gender and BMI 34 to 17 older adults with a normal foot type, from an available sample of 41 young (18-50 35 years) and 44 older (60+ years) adults. Among the matched groups (n=34), muscle thickness 36 and cross-sectional area (CSA) for five intrinsic and two extrinsic toe flexor muscles were 37 obtained using ultrasound. Toe strength was assessed using a pressure platform. Differences 38 in toe flexor strength and muscle size between the young and older matched groups were 39 determined using ANCOVA (controlling for height). Correlations between strength and size 40 of the toe flexor muscles of the pooled group (n=34) were also calculated. 41 Results: Toe strength and the thickness and CSA of most foot muscles and were significantly 42 reduced in the older adults (P<0.05). Hallux and toe flexor strength were strongly correlated 43 with the size of the intrinsic muscles toe flexor muscles. 44 Conclusion: The smaller foot muscles appear to be affected by sarcopenia in older adults. 45 This could contribute to reduced toe flexion force production and affect the ability of older 46 people to walk safely. Interventions aimed at reversing foot muscle atrophy in older people 47 require further investigation

    Staff Knowledge, Adherence to Infection Control Recommendations and Seroconversion Rates in Hemodialysis Centers in Khartoum

    Get PDF
    Introduction: We evaluated hemodialysis (HD) staff knowledge, adherence to infection control recommendations and seroconversion rates for hepatitis B virus (HBV) and hepatitis C virus (HCV) in 13 centers that continuously provided HD services in Khartoum State between June 2009 and November 2010. Methods: The knowledge of 182 HD staff members was evaluated by a self-filled questionnaire. Relevant data were obtained from 1011 HD patients by direct interviews and record review. Adherence of staff members to infection control recommendations was evaluated by direct observation. Results: HD staff members achieved a median score of 81% in knowledge evaluation (range 44-100%). Better scores were achieved by more experienced staff. We identified serious gaps in knowledge related to the environmental risk of viral transmission. Regular screening by enzyme-linked immunoassay (ELISA) was performed in 46% of centers. Only half susceptible patients were vaccinated against HBV. Staff dedicated for treatment of HBV positive patients were found in only 57% of centers that served such patients. Hand washing recommendations were strictly observed in 15% of centers, disinfection of HD stations between patients was strictly observed in 23% of centers, medications were prepared in a separate area in 8% of centers and delivered separately to each patient in none of the centers. There were 2.5 HCV seroconversions and 0.6 HBV seroconversions per 100 patient-years. Center characteristics that predicted HCV seroconversion were accommodation of HCV-positive patients in the same center, using ELISA for patient screening, and assigning more than 3 patients for one HD nurse. Conclusion: There are serious gaps in HD staff knowledge and adherence to infection control recommendations. A structured training program for HD staff members is urgently required. Keywords: Hemodialysis; HBV; HCV; Infection Control; Khartou

    Influence of mechanical activation on the behavior of green high-strength mortar including ceramic waste

    Get PDF
    Solid waste management is a significant environmental issue for countries because of the need for huge landfills. The ceramic tile waste powder (CWP) is one of the wastes. Conversely, cement production, the main ingredient in concrete, emits large quantities of greenhouse gases, a significant environmental concern. Therefore, substituting some of the cement in concrete with CWP is an issue that deserves investigation to reduce the environmental impact of both materials. Accordingly, this study aims to investigate the influence of the grinding time and proportion of CWP as a substitute for cement on the properties of high-strength mortar (HSM). Three grinding times (10, 15, and 20 minutes) and three replacement percentages (10%, 20%, and 30% by weight) for CWP were adopted for each time. Ten mixtures (including the reference mixture) were executed. The fresh (flow rate), mechanical (compressive strength) durability (ultrasonic pulse velocity, dynamic elastic modulus, water absorption, density, percentage of voids and electrical resistivity) and microstructural properties were examined. The life cycle assessment (LCA) was also addressed. The results showed that the mechanical activation had a pronounced effect on the durability properties (especially water absorption and percentage of voids) more than on the compressive strength. Generally, a sustainable HSM (with more than 70 MPa of compressive strength) can be produced in which 30% of the cement was replaced with CWP with almost comparable performance to the CWP-free mortar. Furthermore, LCA results showed that mortars containing 30% CWP ground for 15 mins (GT15CWP30) had the lowest GWP per MPa

    Ophthalmic sensors and drug delivery

    Get PDF
    Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed

    Identification and In Vivo Characterization of NvFP-7R, a Developmentally Regulated Red Fluorescent Protein of Nematostella vectensis

    Get PDF
    In recent years, the sea anemone Nematostella vectensis has emerged as a critical model organism for comparative genomics and developmental biology. Although Nematostella is a member of the anthozoan cnidarians (known for producing an abundance of diverse fluorescent proteins (FPs)), endogenous patterns of Nematostella fluorescence have not been described and putative FPs encoded by the genome have not been characterized.We described the spatiotemporal expression of endogenous red fluorescence during Nematostella development. Spatially, there are two patterns of red fluorescence, both restricted to the oral endoderm in developing polyps. One pattern is found in long fluorescent domains associated with the eight mesenteries and the other is found in short fluorescent domains situated between tentacles. Temporally, the long domains appear simultaneously at the 12-tentacle stage. In contrast, the short domains arise progressively between the 12- and 16-tentacle stage. To determine the source of the red fluorescence, we used bioinformatic approaches to identify all possible putative Nematostella FPs and a Drosophila S2 cell culture assay to validate NvFP-7R, a novel red fluorescent protein. We report that both the mRNA expression pattern and spectral signature of purified NvFP-7R closely match that of the endogenous red fluorescence. Strikingly, the red fluorescent pattern of NvFP-7R exhibits asymmetric expression along the directive axis, indicating that the nvfp-7r locus senses the positional information of the body plan. At the tissue level, NvFP-7R exhibits an unexpected subcellular localization and a complex complementary expression pattern in apposed epithelia sheets comprising each endodermal mesentery.These experiments not only identify NvFP-7R as a novel red fluorescent protein that could be employed as a research tool; they also uncover an unexpected spatio-temporal complexity of gene expression in an adult cnidarian. Perhaps most importantly, our results define Nematostella as a new model organism for understanding the biological function of fluorescent proteins in vivo

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting

    Historical Temperature Variability Affects Coral Response to Heat Stress

    Get PDF
    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions

    Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    Get PDF
    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes
    • …
    corecore