4,482 research outputs found

    Sequential Quantum Cloning

    Get PDF
    Not all unitary operations upon a set of qubits can be implemented by sequential interactions between each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning 1->M and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In particular, we obtain D = 2M for symmetric universal quantum cloning and D = M+1 for symmetric phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in each step of the sequential procedure for both cases.Comment: 4 pages, no figures. New version with changes. Accepted in Physical Review Letter

    Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type

    Get PDF
    Recently was shown that standard odd and even-dimensional General Relativity can be obtained from a (2n+1)(2n+1)-dimensional Chern-Simons Lagrangian invariant under the B2n+1B_{2n+1} algebra and from a (2n)(2n)-dimensional Born-Infeld Lagrangian invariant under a subalgebra LB2n+1\cal{L}^{B_{2n+1}} respectively. Very Recently, it was shown that the generalized In\"on\"u-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras types Mm\cal{M}_{m} which correspond to the so called BmB_{m} Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional General Relativity may emerge as a weak coupling constant limit of a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type M2m+1\cal{M}_{2m+1}, if and only if mpm\geq p. Similarly, we show that standard even-dimensional General Relativity emerges as a weak coupling constant limit of a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under a subalgebra LM2m\cal{L}^{\cal{M}_{2m}} of the Maxwell algebra type, if and only if mpm\geq p. It is shown that when m<pm<p this is not possible for a (2p+1)(2p+1)-dimensional Chern-Simons Lagrangian invariant under the M2m+1\cal{M}_{2m+1} and for a (2p)(2p)-dimensional Born-Infeld type Lagrangian invariant under LM2m\cal{L}^{\cal{M}_{2m}} algebra.Comment: 30 pages, accepted for publication in Eur.Phys.J.C. arXiv admin note: text overlap with arXiv:1309.006

    Generalized Poincare algebras and Lovelock-Cartan gravity theory

    Get PDF
    We show that the Lagrangian for Lovelock-Cartan gravity theory can be re-formulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern-Simons theory invariant under the generalized Poincar\'{e} algebra B2n+1,\mathfrak{B}_{2n+1}, while in even dimensions the Lagrangian leads to a Born-Infeld theory invariant under a subalgebra of the B2n+1\mathfrak{B}_{2n+1} algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern-Pontryagin character for the B2n+1B_{2n+1} group.Comment: v2: 18 pages, minor modification in the title, some clarifications in the abstract, introduction and section 2, section 4 has been rewritten, typos corrected, references added. Accepted for publication in Physic letters

    Double non-perturbative gluon exchange: an update on the soft Pomeron contribution to pp scattering

    Get PDF
    We employ a set of recent, theoretically motivated, fits to non-perturbative unquenched gluon propagators to check in how far double gluon exchange can be used to describe the soft sector of pp scattering data (total and differential cross section). In particular, we use the refined Gribov--Zwanziger gluon propagator (as arising from dealing with the Gribov gauge fixing ambiguity) and the massive Cornwall-type gluon propagator (as motivated from Dyson-Schwinger equations) in conjunction with a perturbative quark-gluon vertex, next to a model based on the non-perturbative quark-gluon Maris-Tandy vertex, popular from Bethe-Salpeter descriptions of hadronic bound states. We compare the cross sections arising from these models with "older" ISR and more recent TOTEM and ATLAS data. The lower the value of total energy \sqrt{s}, the better the results appear to be.Comment: 14 pages, 8 .pdf figures. To appear in Phys.Rev.

    Inductive Entanglement Classification of Four Qubits under SLOCC

    Get PDF
    Using an inductive approach to classify multipartite entangled states under stochastic local operations and classical communication introduced recently by the authors [Phys. Rev. A 74, 052336 (2006)], we give the complete classification of four-qubit entangled pure states. Apart from the expected degenerate classes, we show that there exist eight inequivalent ways to entangle four qubits. In this respect, permutation symmetry is taken into account and states with a structure differing only by parameters inside a continuous set are considered to belong to the same class.Comment: 11 pages and no figures. Accepted in PR

    Higher dimensional gravity invariant under the Poincare group

    Full text link
    It is shown that the Stelle-West Grignani-Nardelli-formalism allows, both when odd dimensions and when even dimensions are considered, constructing actions for higher dimensional gravity invariant under local Lorentz rotations and under local Poincar\`{e} translations. It is also proved that such actions have the same coefficients as those obtained by Troncoso and Zanelli in ref. Class. Quantum Grav. 17 (2000) 4451.Comment: 7 pages, Latex, accepted in Phys. Rev.
    corecore