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theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the Lagrangian 
leads to a Born–Infeld theory invariant under a subalgebra of the B2n+1 algebra. It is also shown that 
torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to 
the Chern–Pontryagin character for the B2n+1 group.
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1. Introduction

The most general metric theory of gravity satisfying the criteria 
of general covariance and yielding to second-order field equations 
is a polynomial of degree [d/2] in the curvature known as the 
Lanczos–Lovelock gravity theory (LL) [1,2]. The LL action can be 
written as the most general d-form invariant under local Lorentz 
transformations, constructed with the spin connection, the vielbein 
and their exterior derivatives, without the Hodge dual [3,4],

S =
∫ [d/2]∑

p=0

α̃pεa1a2···ad Ra1a2 · · · Ra2p−1a2p ea2p+1 · · · ead , (1)

where Rab = dωab + ωa
cω

cb is the Lorentz curvature, ea corre-
sponds to the one-form vielbein and the coefficients α̃p , p =
0, 1, . . . , [d/2], are arbitrary constants and they are not fixed from 
first principles.

It is an accepted fact that requiring the LL theory to have the 
maximum possible number of degrees of freedom fixes the pa-
rameters α̃p ’s in terms of the gravitational and the cosmological 
constants [5]. As a consequence, the action in odd dimensions can 
be formulated as a Chern–Simons (ChS) theory of the AdS group, 
while in even dimensions the action has a Born–Infeld (BI) form 
invariant only under local Lorentz rotations in the same way as 
the Einstein–Hilbert action [5–8].

Although the Einstein–Hilbert term is contained in the LL ac-
tion, the ChS gravity for the AdS group and the BI gravity for the 
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Lorentz group are dynamically very different from standard Gen-
eral Relativity.

In Ref. [9] it was shown that the standard, odd-dimensional 
General Relativity can be obtained from a Chern–Simons gravity 
theory for a certain Bm Lie algebra, which will be called general-
ized Poincaré algebra1 (where the particular case B4 corresponds 
to the so-called Maxwell algebra [10]). The generalized Poincaré al-
gebras can be obtained by a resonant reduced S-expansion of the 
AdS Lie algebra using S(N)

E = {λα}N+1
α=0 as semigroup [9].

The S-expansion method has been introduced in Ref. [13] (see 
also [14–16]) and consists in a powerful tool in order to obtain 
new Lie algebras from original ones. The method is based on com-
bining the structure constants of a Lie algebra g with the inner 
multiplication law of a semigroup S . The new Lie algebra G = S ×g

is called the S-expanded algebra. Interestingly, when a decompo-
sition of the semigroup S = ⋃

p∈I S p (where I is a set of indices) 
satisfies the same structure that the subspaces V p of the original 
algebra g = ⊕

p∈I V p , we say that GR = ⊕
p∈I S p × V p is a reso-

nant subalgebra of G =S × g . In particular, when the semigroup 
has a zero element 0S , the reduced algebra is obtained imposing 
0S × g = 0.

Subsequently, in Ref. [11] it was found that standard even-
dimensional General Relativity emerges as a limit of a Born–Infeld 
theory invariant under a certain subalgebra LBm of the Bm Lie 
algebra. These odd- and even-dimensional theories are described 
by the so-called Einstein–Chern–Simons (EChS) and the Einstein–
Born–Infeld (EBI) actions, respectively.

1 Alternatively known as the Maxwell algebra type.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Very recently it was found in Ref. [12] that standard odd- and 
even-dimensional General Relativity emerges as a weak coupling 
constant limit of a (2p + 1)-dimensional Chern–Simons Lagrangian 
and of a 2p-dimensional Born–Infeld Lagrangian invariant under 
B2m+1 and LB2m , respectively, if and only if m ≥ p.

It is the purpose of this paper to show that: (i) it is possible 
to reformulate the Lagrangian for Lovelock–Cartan gravity theory, 
which we call “Lagrangian of Einstein–Lovelock–Cartan (ELC)”, such 
that, in odd dimensions leads to the Einstein–Chern–Simons La-
grangian, and in even dimensions leads to the Einstein–Born–Infeld 
Lagrangian; (ii) the torsion may occur explicitly in the Lagrangian 
and that, following a procedure analogous to that of Ref. [5], it is 
possible to find new torsional Lagrangians, which are related to the 
Chern–Pontryagin character for the B2n+1 group.

This paper is organized as follows. In Section 2 we briefly re-
view some aspects of the construction of the so-called generalized 
Poincaré algebras and how it is possible to obtain General Relativ-
ity from the Chern–Simons and Born–Infeld formalism using these 
algebras.

In Section 3 the ELC-Lagrangian is constructed. It is shown that 
this Lagrangian leads in odd dimensions to the EChS Lagrangian 
and in even dimensions leads to the EBI Lagrangian.

In Section 4 the ELC-Lagrangian is generalized adding torsion 
explicitly following a procedure analogous to that of Ref. [5]. It is 
shown that in 4p dimensions, the only 4p-forms B2n+1-invariant, 
constructed from e(a,2k+1) , R(ab,2k) and T (a,2k+1) (k = 0, . . . , n − 1), 
are Pontryagin type invariants P (4p) .

In Section 5 we show that using the dual formulation of the 
S-expansion introduced in Ref. [17], it is possible to relate the 
Euler type invariant and the Pontryagin type invariant in d = 3
dimensions. Section 6 concludes the work with a comment and 
possible developments.

2. General relativity and the generalized Poincaré algebras 
B2n+1

In order to describe how the action for General Relativity can 
be obtained from the gravity actions invariant under general-
ized Poincaré algebras, let us review here the results obtained in 
Refs. [9,11,12]. Following the definitions of Ref. [13] let us con-
sider the S-expansion of the Anti-de Sitter (AdS) Lie algebra using 
as a semigroup S(2n−1)

E = {λ0, . . . , λ2n} endowed with the multi-
plication law λαλβ = λα+β when α + β ≤ 2n; λαλβ = λ2n when 
α + β > 2n. The J̃ab , P̃a generators of the AdS algebra satisfy the 
following commutation relations

[ J̃ab, J̃ cd] = ηbc J̃ad − ηac J̃bd − ηbd J̃ac + ηad J̃bc, (2)

[ J̃ab, P̃ c] = ηbc P̃a − ηac P̃b, (3)

[ P̃a, P̃b] = J̃ab, (4)

where a, b = 0, . . . , 2n and ηab corresponds to the Minkowski met-
ric. Let us consider the following subset decomposition S(2n−1)

E =
S0 ∪ S1, with

S0 = {λ2m, with m = 0, . . . ,n − 1} ∪ {λ2n}, (5)

S1 = {λ2m+1, with m = 0, . . . ,n − 1} ∪ {λ2n}, (6)

where λ2n corresponds to the zero element of the semigroup 
(0S = λ2n). After extracting a resonant subalgebra and performing 
its 0S (= λ2n)-reduction, one finds the generalized Poincaré algebra 
B2n+1,

[Pa, Pb] = Z (1)

ab , [ Jab, Pc] = ηbc Pa − ηac Pb, (7)

[ Jab, Jcd] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb, (8)
[
Jab, Z (i)

c
] = ηbc Z (i)

a − ηac Z (i)
b , (9)[

Z (i)
ab , Pc

] = ηbc Z (i)
a − ηac Z (i)

b , (10)[
Z (i)

ab , Z ( j)
c

] = ηbc Z (i+ j)
a − ηac Z (i+ j)

b , (11)[
Jab, Z (i)

cd

] = ηcb Z (i)
ad − ηca Z (i)

bd + ηdb Z (i)
ca − ηda Z (i)

cb , (12)[
Z (i)

ab,
Z ( j)

cd

] = ηcb Z (i+ j)
ad − ηca Z (i+ j)

bd

+ ηdb Z (i+ j)
ca − ηda Z (i+ j)

cb , (13)[
Pa, Z (i)

c
] = Z (i+1)

ab ,
[

Z (i)
a , Z ( j)

c
] = Z (i+ j+1)

ab , (14)

where i, j = 1, . . . , n − 1. Let us note that the generators of the 
B2n+1 algebra are related to the original ones through

Jab = J (ab,0) = λ0 ⊗ J̃ab, (15)

Pa = P (a,1) = λ1 ⊗ P̃a, (16)

Z (i)
ab = J (ab,2i) = λ2i ⊗ J̃ab, (17)

Z (i)
a = P (a,2i+1) = λ2i+1 ⊗ P̃a, (18)

then if i > n − 1 we have Z (i)
ab = Z (i)

a = 0. The generalized Poincaré 
algebra B2n+1 is also known as the Maxwell algebra type which 
was introduced in Ref. [12]. We note that setting Z (i+1)

ab and Z (i)
a

equal to zero, we obtain the B4 algebra which coincides with the 
Maxwell algebra M [10]. In fact, every generalized Poincaré alge-
bra Bl can be obtained from B2n+1 setting some generators equal 
to zero. Besides, one can see that the commutators (8), (12) and 
(13) form a Lorentz type subalgebra of the B2n+1 algebra. This 
subalgebra denoted as LB2n+1 can be obtained as an S-expansion 
of the Lorentz algebra L using S(2n−1)

0 = {λ0, λ2, λ4, . . . , λ2n} as the 
relevant semigroup [11].

The generalized Poincaré algebras are particularly interesting in 
the context of gravity since it was shown in [9] that standard odd-
dimensional General Relativity may emerge as the weak coupling 
constant limit (l → 0) of a (2n + 1)-dimensional Chern–Simons La-
grangian invariant under the B2n+1 algebra,

L
B2n+1
CS (2n+1) =

n∑
k=1

l2k−2ckα jδ
j
i1+···+in+1

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

εa1···a2n+1

× R(a1a2,i1) · · · R(a2k−1a2k,ik)e(a2k+1,p1)e(a2k+2,q1) · · ·
× e(a2n−1,pn−k)e(a2n,qn−k)e(a2n+1,in+1), (19)

where

ck = 1

2(n − k) + 1

(
n
k

)

R(ab,2i) = dω(ab,2i) + ηcdω
(ac,2 j)ω(db,2k)δi

j+k,

and α j are arbitrary constants which appear as a consequence of 
the S-expansion process. Let us note that the S-expanded fields 
are related to the AdS fields {ẽa, ω̃ab} as follows,

e(a2 j+1) = λ2 j+1 ⊗ ẽa,

ω(ab,2 j) = λ2 j ⊗ ω̃ab,

where j = 0, 1, . . . , n − 1. In a similar way, the S-expanded Lorentz 
curvature R(ab,2i) is related to the Lorentz curvature R̃ab = dω̃ab +
ω̃a

cω̃
cb as R(ab,2i) = λ2i R̃ab .

Similarly, it was shown in [11] that standard even-dimensional 
General Relativity emerges as the weak coupling constant limit 
(l → 0) of a (2n)-dimensional Born–Infeld type Lagrangian invari-
ant under a subalgebra2 LB2n of the B2n+1 algebra,

2 The Lorentz type algebra LB2n is identical to LB2n+1 .
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LL
B2n

BI (2n) =
n∑

k=1

l2k−2 1

2n

(
n

k

)
α jδ

j
i1+···+in

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

× εa1···a2n R(a1a2,i1) · · · R(a2k−1a2k,ik)e(a2k+1,p1)

× e(a2k+2,q1) · · · e(a2n−1,pn−k)e(a2n,qn−k). (20)

These results have recently been generalized in Ref. [12] in 
which the authors have shown that L

B2m+1
CS (2n+1) and LL

B2m
BI (2n) lead to 

the Einstein–Hilbert Lagrangian in a weak coupling constant limit, 
if and only if m ≥ n.

3. The Einstein–Lovelock–Cartan Lagrangian

We have seen that the S-expansion procedure allows the con-
struction of Chern–Simons gravities in odd dimensions invariant 
under the B2n+1 algebra and Born–Infeld type gravities in even 
dimensions invariant under the LB2n+1 algebra, leading to General 
Relativity in a certain limit. These gravities are called the Einstein–
Chern–Simons theories [9] and the Einstein–Born–Infeld theories 
[11], respectively. These findings show that it could be possible to 
reformulate the Lagrangian for Lovelock–Cartan gravity theory such 
that, in a certain limit, it leads to the General Relativity theory.

In this section we show that it is possible to write a Lovelock–
Cartan Lagrangian leading to the EChS Lagrangian in d = 2n − 1
invariant under the B2n−1 algebra, and to the EBI Lagrangian in 
d = 2n invariant under the LB2n algebra. For this purpose we 
shall use the useful properties of the S-expansion procedure us-
ing S(d−2)

E as the relevant semigroup.
The expanded action is given by

SELC =
∫ [d/2]∑

p=0

μiαp L(p,i)
ELC (21)

where αp and μi , with i = 0, . . . , d − 2, are arbitrary constants and 
L(p,i)
ELC is given by

L(p,i)
ELC = ld−2δi

i1+···+id−p
εa1a2···ad R(a1a2,i1) · · ·

× R(a2p−1a2p ,ip)e(a2p+1,ip+1) · · · e(ad,id−p), (22)

with

R(ab,2i) = dω(ab,2i) + ηcdω
(ac,2 j)ω(db,2k)δi

j+k. (23)

The expanded fields {e(a,2i+1), ω(ab,2i)} are related to the AdS fields 
{ẽa, ω̃ab} as follows

ω(ab,2i) = λ2i ⊗ ω̃ab, (24)

e(a,2i+1) = λ2i+1 ⊗ ẽa, (25)

where λα ∈ S(d−2)
E , which is a semigroup that obey the following 

multiplication law (see Ref. [13]),

λαλβ =
{

λα+β, when α + β ≤ d − 1,

λd−1, when α + β > d − 1.
(26)

Following the same procedure of Ref. [5], we consider the variation 
of the action with respect to e(a,i) and ω(ab,i) . The variation of the 
action (21) leads to the following equations:

ε
(i)
a =

[(d−1)/2]∑
p=0

μiαp(d − 2p)ε
(p,i)
a = 0, (27)

ε
(i)
ab =

[(d−1)/2]∑
μiαp p(d − 2p)ε

(p,i)
ab = 0, (28)
p=1
where

ε
(p,i)
a := ld−2δi

i1+···+id−p−1
εab1···bd−1 R(b1b2,i1) · · · R(b2p−1b2p ,ip)

× e(b2p+1,ip+1) · · · e(bd−1,id−p−1), (29)

ε
(p,i)
ab := ld−2δi

i1+···+id−p−1
εaba3···ad R(a3a4,i1) · · · R(a2p−1a2p ,ip−1)

× T (a2p+1,ip)e(a2p+2,ip+1) · · · e(ad,id−p−1), (30)

and where T (a,i) = de(a,i) + ηdcω
(ad, j)e(c,k)δi

j+k is the expanded 
2-form torsion. Using the covariant exterior derivative D = d +
[A, · ] (where A corresponds to the one-form gauge connection 
B2n−1-valued) and the Bianchi identity for the expanded 2-form 
curvature D R(ab,i j) = 0, we have

Dε
(p,i)
a = ld−2(d − 1 − 2p)δi

i1+···+id−p−1
εab1···bd−1

× R(b1b2,i1) · · · R(b2p−1b2p ,ip)

× T (b2p+1,ip+1)e(b2p+2,ip) · · · e(ad−1,id−p−1). (31)

Since

e(b, j)εba
(p,k)δi

j+k = ld−2δi
i1+···+id−p−1

εaa1···ad−2

× R(a1a2,i1) · · · R(a2p−3a2p−2,ip−1)

× T (a2p−1,ip)e(a2p ,ip+1) · · · e(ad−2,id−p−1), (32)

one finds

e(b, j)εba
(p+1,k)δi

j+k = ld−2δi
i1+···+id−p

εaa1···ad−1

× R(a1a2,i1) · · · R(a2p−1a2p ,ip−1)

× T (a2p+1,ip)e(a2p+2,ip+1) · · · e(ad−1,id−p).

(33)

From (31) and (33) we have

Dε
(p,i)
a = (d − 1 − 2p)e(b, j)εba

(p+1,k)δi
j+k

for 0 ≤ p ≤ [(d − 1)/2]. This means that

Dεa
(i) =

[(d−1)/2]∑
p=0

μiαp(d − 2p)(d − 1 − 2p)e(b, j)εba
(p+1,k)δi

j+k.

(34)

if p′ = p + 1 we find

Dεa
(i) =

[(d+1)/2]∑
p′=1

μiαp′−1
(
d − 2p′ + 2

)(
d − 2p′ + 1

)

× e(b, j)εba
(p′,k)δi

j+k, (35)

which can be rewritten as

Dεa
(i) =

[(d+1)/2]∑
p=1

μiαp−1(d − 2p + 2)(d − 2p + 1)

× e(b, j)εba
(p,k)δi

j+k, (36)

which by consistency with ε(i)
a = 0 must also vanish. Taking the 

product of εba
(k) with e(b, j) we find

e(b, j)εba
(k)δi

j+k =
[(d−1)/2]∑

p=1

μiαp p(d − 2p)e(b, j)εba
(p,k)δi

j+k (37)

which vanishes by consistency with ε(i) = 0.
ab
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In general there are different ways of choosing the coefficients 
αp which in general correspond to different theories with differ-
ent numbers of degrees of freedom. It is possible to choose the αp

such that εa
(i) and εab

(i) are independent. This last condition cor-
responds to the maximum number of independent components.

3.1. Chern–Simons gravity invariant under B2n−1

Following the same procedure of Ref. [5] one can see that in the 
odd-dimensional case Eqs. (36), (37) lead to the coefficients given 
by

αp = α0
(2n − 1)(2γ )p

(2n − 2p − 1)

(
n − 1

p

)
, (38)

where α0 and γ are related to the gravitational and the cosmolog-
ical constants,

α0 = κ

(ld−1d)
; γ = − sgn(Λ)

l2

2
. (39)

For any dimension d, l is a length parameter related to the cosmo-
logical constant by

Λ = ± (d − 1)(d − 2)

2l2
, (40)

and the gravitational constant G is related to κ through

κ−1 = 2(d − 2)!Ωd−2G. (41)

With these coefficients the Lagrangian (21) may be written as the 
Chern–Simons form

L
B2n−1
CS (2n−1)

=
n−1∑
p=0

l2p−2 κ

2(n − p) − 1

(
n − 1

p

)
μiδ

i
i1+···+i2n−1−p

× εa1a2···a2n−1 R(a1a2,i1) · · · R(a2p−1a2p ,ip)

× e(a2p+1,ip+1) · · · e(a2n−1,i2n−1−p). (42)

Let us note that this Lagrangian can be expressed equivalently as 
follows3

L
B2n−1
CS (2n−1)

=
n−1∑
k=1

l2k−2ckαiδ
i
i1+···+in

δ
ik+1
p1+q1

· · · δin−1
pn−1−k+qn−1−k

× εa1···a2n−1 R(a1a2,i1) · · · R(a2k−1a2k,ik)e(a2k+1,p1)

× e(a2k+2,q1) · · · e(a2n−3,pn−1−k)e(a2n−2,qn−1−k)e(a2n−1,in),

(43)

where

ck = 1

2(n − k) − 1

(
n − 1

k

)
, (44)

αi = κμi (45)

and

R(ab,2i) = dω(ab,2i) + ηcdω
(ac,2 j)ω(db,2k)δi

j+k. (46)

This is the Einstein–Chern–Simons Lagrangian [compare with 
Eq. (19)] found in Ref. [9].

3 The term with p = 0 does not contribute to the sum because δi
i1+···+i2n−1

= 0
for any value of i and n.
3.2. Born–Infeld gravity invariant under LB2n

In the even-dimensional case, following the same procedure of 
Ref. [5] one can see that Eqs. (36), (37), lead to the following coef-
ficients

αp = α0(2γ )p
(

n

p

)
. (47)

With these coefficients the Lagrangian (21) is given by

LL
B2n

BI (2n) =
n∑

p=0

κ

2n
l2p−2

(
n

p

)
μiδ

i
i1+···+i2n−p

× εa1a2···a2n R(a1a2,i1) · · · R(a2p−1a2p ,ip)

× e(a2p+1,ip+1) · · · e(a2n,i2n−p), (48)

or equivalently,4

LL
B2n

BI (2n) =
n∑

k=1

1

2n
l2k−2

(
n

k

)
αiδ

i
i1+···+in

δ
ik+1
p1+q1

· · · δin
pn−k+qn−k

× εa1···a2n R(a1a2,i1) · · · R(a2k−1a2k,ik)e(a2k+1,p1)

× e(a2k+2,q1) · · · e(a2n−1,pn−k)e(a2n,qn−k), (49)

which corresponds to the Einstein–Born–Infeld Lagrangian found 
in Ref. [11]. It is important to note that the coefficients αi = κμi
are arbitrary constants.

In this way we have shown that the S-expansion procedure 
does not modify the αp ’s coefficients defined in Ref. [5]. Unlike 
the Lanczos–Lovelock action, the expanded action (21) called the 
Einstein–Lovelock action, has the property of leading to General 
Relativity in a certain limit of the coupling constant l both even 
and odd dimensions.

4. Adding torsion in the Lagrangian

The Lagrangian (21) can be interpreted as the most general 
d-form invariant under a Lorentz type subalgebra LB2n of the 
generalized Poincaré algebra. This Lagrangian is constructed from 
the expanded vielbein and the expanded spin connection e(a,2k+1) , 
ω(ab,2k) (k = 0, . . . , n − 1) and their exterior derivatives.5

One can see from the variation of the EL Lagrangian that 
Eq. (30) does not imply in d > 4 the vanishing of the expanded 
torsion T (a,2k+1) . The condition T (a,2k+1) = 0 implies that the 
expanded spin connection ω(ab,2k) have a dependence on the 
expanded vielbein e(a,2k+1) . Thus the expanded fields ω(ab,2k)

and e(a,2k+1) cannot be identified as the components of a con-
nection for the generalized Poincaré algebra. Therefore, impose 
T (a,2k+1) = 0 seems to be restrictive and arbitrary. In this section, 
we study the possibility of adding terms which contain the ex-
panded torsion to the ELC Lagrangian.

The Einstein–Lovelock–Cartan Lagrangian can be generalized 
adding torsion explicitly following a procedure analogous to that 
of the Refs. [5,18].

The only terms invariant under LB2n that can be constructed 
out of e(a,2k+1) , ω(ab,2k) and their exterior derivatives, are R(ab,2k) , 
T (a,2k+1) , and products of them. Then the invariant combinations 
that can occur in the Lagrangian are:

4 As in the odd-dimensional case p = 0 does not contribute to the sum because 
δi

i1+···+i2n
= 0 for any value of i and n.

5 When k = 0, e(a,1) and ω(ab,0) are identified with the usual vielbein ea and the 
spin connection ωab , respectively.
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R(i)
A = δi

2(k1+···+kA)Ra1,(2k1)
a2 · · · RaA ,(2kA)

a1 , (50)

V (i)
A = δi

2(k1+···+kA+kA+1+kA+2+1)Ra1,(2k1)
a2 · · ·

× RaA ,(2kA)

b ea1
,(2kA+1+1)e(b,2kA+2+1), (51)

T (i)
A = δi

2(k1+···+kA+kA+1+kA+2+1)Ra1,(2k1)
a2 · · ·

× RaA ,(2kA)

b Ta1
,(2kA+1+1)T (b,2kA+2+1), (52)

K (i)
A = δi

2(k1+···+kA+kA+1+kA+2+1)Ra1,(2k1)
a2 · · ·

× RaA ,(2kA)

b Ta1
,(2kA+1+1)e(b,2kA+2+1), (53)

where i = 0, . . . , 2n − 2. So that, the Lagrangian can be written as 
a linear combination of products of these basic invariant combina-
tions. In a similar way to Ref. [18], we find that the Lagrangian has 
to be of the form

L =
[d/2]∑
p=0

μiαp L(p,i)
EL +

∑
j

μiβ j L
d,(i)
A j

, (54)

where the μ, α and β are constants, L(p,i)
ELC corresponds to the 

Einstein–Lovelock Lagrangian (22) and Ld,(i)
A j

is a d-form invariant 
under the LB algebra given by

Ld,(i)
A j

= R(i)
A1

· · · R(i)
Ar

T (i)
B1

· · · T (i)
Bt

V (i)
C1

· · · V (i)
C v

K (i)
D1

· · · K (i)
Dk

. (55)

Thus, the inclusion of the expanded torsion leads to a number 
of arbitrary coefficients β j. Interestingly, as in the AdS symmetry 
case, it is possible to choose the β ’s in order to enlarge the Lorentz 
type LB symmetry to the generalized Poincaré gauge symmetry.

In even dimensions, the B2n+1-invariant d-forms are given by

P = 〈
F d/2〉, (56)

where 〈. . .〉 denotes a symmetric invariant tensor for the B2n+1
algebra. Here, F = dA + A A is the 2-form curvature for the gener-
alized Poincaré algebra and it is given by

F =
n−1∑
k=0

[
1

2
F (ab,2k) J (ab,2k) + 1

l
F (a,2k+1) P (a,2k+1)

]
, (57)

with

F (ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2 j)δk

i+ j

+ 1

l2
e(a,2i+1)e(b,2 j+1)δk

i+ j+1, (58)

F (a,2k+1) = de(a,2k+1) + ηbcω
(ab,2i)e(c,2 j)δk

i+ j. (59)

The ω(ab,2k) and e(a,2k+1) are the different components of the 
1-form connection A,

A =
n−1∑
k=0

[
1

2
ω(ab,2k) J (ab,2k) + 1

l
e(a,2k+1) P (a,2k+1)

]
, (60)

where J (ab,2k) and P (a,2k+1) are the generators of the generalized 
Poincaré algebra B2n+1.

Naturally, one of the invariants present in even dimensions is 
the Euler type invariant which is obtained from the following com-
ponents of an invariant tensor,

〈 J (a1a2,2k1) · · · J (ad−3ad−2,2k(d−2)/2) P (ad−1,2kd/2+1)〉
= μiδ

i
2(k1+···+kd/2)+1εa1a2···ad−1 , (61)

with ki = 0, . . . , n − 1.
However, there are other components of the invariant tensor 
which lead to a different invariant known as the Pontryagin in-
variant which exists only in 4p dimensions. This invariant corre-
sponds to the B2n+1-invariant d-form built from e(a,2k+1) , R(ab,2k) , 
T (a,2k+1) and can be expressed as the exterior derivative of a 
Chern–Simons (4p − 1)-form,

dL
B2n+1
T (4p−1) = P (4p). (62)

This implies that in odd dimensions there are two families 
of Lagrangians invariant under the generalized Poincaré algebra 
B2n+1:

• The Euler–Chern–Simons form L
B2n+1
E (2p+1)

, in D = 2p + 1. Its ex-
terior derivative is the Euler density in 2p + 2 dimensions and 
does not involve torsion explicitly.

• The Pontryagin–Chern–Simons form L
B2n+1
T (4p−1) , in D = 4p − 1. Its 

exterior derivative is the Pontryagin invariant P
B2n+1
(4p) in 4p di-

mensions.

These results generalize those obtained in Ref. [5] to our case. 
The similitude is not a surprise since the B2n+1 algebra corre-
sponds to an expansion of the AdS algebra. Nevertheless, unlike 
the AdS-invariant gravity theory, the locally B2n+1-invariant grav-
ity theory leads to General Relativity in the weak coupling constant 
limit (l → 0) (see Refs. [9,11,12]).

Interestingly, in 4p dimensions, both families exist which allows 
us to write the most general Lagrangian for gravity in d = 4p − 1
invariant under the generalized Poincaré algebra, namely

L
B2n+1
CS (4p−1) = L

B2n+1
E (4p−1) + L

B2n+1
T (4p−1) (63)

= αi L
(i)
E (4p−1) + α j L

( j)
T (4p−1), (64)

where i = 1, 3, 5, . . . , 2n − 1 and j = 0, 2, 4, . . . , 2n − 2. The α’s are 
arbitrary and are a consequence of the S-expansion procedure. In 
the next subsection, we explore an example in d = 3 which clari-
fies this point.

4.1. Example for d = 3

Let us consider a (2 + 1)-dimensional Lagrangian invariant un-
der the B5 algebra. This algebra can be obtained from the AdS
algebra, using the S-expansion procedure of Ref. [13].

After extracting a resonant subalgebra and performing a 0S -
reduction, one finds the B5 algebra, whose generators satisfy the 
following commutation relations

[Pa, Pb] = Zab, [ Jab, Pc] = ηbc Pa − ηac Pb (65)

[ Jab, Jcd] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb (66)

[ Jab, Zcd] = ηcb Zad − ηca Zbd + ηdb Zca − ηda Zcb (67)

[ Jab, Zc] = ηbc Za − ηac Zb, (68)

[Zab, Pc] = ηbc Za − ηac Zb, (69)

[Zab, Zc] = [Zab, Zcd] = [Pa, Zc] = 0. (70)

In order to write down a Chern–Simons Lagrangian for the B5
algebra, we start from the B5-valued one-form gauge connection

A = 1

2
ωab Jab + 1

l
ea Pa + 1

2
kab Zab + 1

l
ha Za, (71)

and the associated two-form curvature
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F = 1

2
Rab Jab + 1

l
T a Pa + 1

2

(
Dωkab + 1

l2
eaeb

)
Zab

+ 1

l

(
Dωha + ka

beb)Za. (72)

Using Theorem VII.2 of Ref. [13], it is possible to show that the 
only non-vanishing components of an invariant tensor for the B5
algebra are given by

〈 Jab Jcd〉B5 = α0(ηadηbc − ηacηbd),

〈 Jab Pc〉B5 = α1εabc, (73)

〈 Jab Zcd〉B5 = α2(ηadηbc − ηacηbd),

〈 Jab Zc〉B5 = α3εabc, (74)

〈Pa Pc〉B5 = α2ηac, 〈Zab Pc〉B5 = α3εabc, (75)

where α0, α1, α2 and α3 are arbitrary constants.
Using these components of the invariant tensor in the general 

expression for the ChS Lagrangian LChS = 〈AdA+ 2
3 A3〉, we find that 

the ChS Lagrangian invariant under the B5 algebra is given by

LB5
ChS (2+1)

= 1

l
εabc

[
α1 Rabec + α3

(
1

3l2
eaebec + Rabhc + kab T c

)]

+ α0

2

(
ωa

bdωb
a + 2

3
ωa

bω
b

cω
c

a

)

+ α2

2

(
2

l2
ea Ta + ωa

bdkb
a + ka

bdωb
a + 2ωa

bω
b

ckc
a

)

(76)

= α1L(1)
E (3) + α3L(3)

E (3) + α0L(0)
T (3) + α2L(2)

T (3). (77)

The exterior derivative of this Lagrangian leads us to the fol-
lowing associated invariant

PB5
(4) = 1

l
εabc

[
α1 Rab T c

+ α3

(
1

l2
eaeb T c + Rab(Dωhc + kc

ded) + Dωkab T c
)]

+ α0

2
Ra

b Rb
a + α2

2

[
2

l2
(
T a Ta − eaeb Rab

) + 2Ra
b Dωkb

a

]
,

(78)

where in addition to an Euler type density we can see that ap-
pears the usual Pontryagin density P (4) = Ra

b Rb
a , the Nieh–Yan 

N(4) = 2
l2

(T a Ta − eaeb Rab) and a Pontryagin type density P4(k) =
2Ra

b Dωkb
a coming from the new fields.

Note that these densities P (4) , N(4) and P (4)(k) are combined in 
a Pontryagin type invariant for the B5 group which is written as 
follows (choosing α0 = α2)

F A
B F B

A = Ra
b Rb

a +
[

2

l2
(
T a Ta − eaeb Rab

) + 2Ra
b Dωkb

a

]
, (79)

where

F AB =
(

Rab + (Dωkab + 1
l2

eaeb) 1
l T a + 1

l (Dωha + ka
cec)

− 1
l T b − 1

l (Dωhb + kb
cec) 0

)

(80)

In the next section we show that the B5-invariant Lagrangian 
(76) can be obtained directly from the Lorentz-invariant La-
grangian.
5. Relation between the Pontryagin and Euler invariants

In this section we show that it is possible to relate the Lorentz 
invariant Lagrangian which depends only on the spin connection, 
and the Lagrangian obtained for the B5 algebra. This means that 
by dual formulation of the S-expansion [17] is possible to obtain 
both an Euler type invariant and a Pontryagin type invariant from 
the Pontryagin invariant.

Consider first the Lorentz algebra L in (2 + 1)-dimensions,

[ Jab, Jcd] = ηcb Jad − ηca Jbd + ηdb Jca − ηda Jcb. (81)

The one-form gauge connection A and the associated two-form 
curvature F are given by

A = 1

2
ωab Jab, (82)

F = 1

2
Rab Jab, (83)

where Rab = dωab + ωa
cω

cb is the Lorentz curvature. The corre-
sponding Chern–Simons Lagrangian invariant under the Lorentz 
algebra L is given by

LLorentz
3 = ωa

bdωb
a + 2

3
ωa

bω
b

cω
c

a, (84)

which can be written as

LLorentz
3 =

〈
AdA + 2

3
A3

〉
,

where the invariant tensor 〈· · ·〉 for the Lorentz algebra is

〈 Jab Jcd〉L = ηadηbc − ηacηbd.

Before starting the S-expansion of the Lorentz algebra is useful 
to define

J a = −1

2
εabc Jbc, ωa = −1

2
εabcω

bc,

so that

A = ωa Ja, F = Fa Ja, (85)

with

Fa = −1

2
εabc Rbc = dωa − 1

2
ηabε

bcdωcωd. (86)

Now let us consider the S(3)
E expansion of Lorentz algebra. The 

appropriate semigroup S(3)
E = {λ0, λ1, λ2, λ3, λ4} is endowed with 

the following product:

λαλβ =
{

λα+β, when α + β ≤ 4,

λ4, when α + β > 4,
(87)

where λ4 = 0s is the zero element of the semigroup.
In a similar way to Ref. [17], we define the spin connection and 

the 2-form curvature as

ωa = λ0ωa
(0) + λ1ωa

(1) + λ2ωa
(2) + λ3ωa

(3), (88)

Fa = λ0 Fa
(0) + λ1 Fa

(1) + λ2 Fa
(2) + λ3 Fa

(3), (89)

where

ωa
(0) = ωa, ωa

(2) = ka,

ωa
(1) = 1

l
ea, ωa

(3) = 1

l
ha,

and
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Fa
(0) = −1

2
εabc Rbc, (90)

Fa
(1) = 1

l
Ta, (91)

Fa
(2) = −1

2
εabc

(
Dωkbc + 1

l2
ebec

)
, (92)

Fa
(3) = 1

l

(
Dωha + ka

beb). (93)

Here we identify ea with the vielbein, Rab with the Lorentz curva-
ture, T a with the torsion, and kab and ha are identified as bosonic 
“matter” fields.

Using Theorem VII.2 of Ref. [13], it is possible to show that the 
only non-vanishing components of an invariant tensor for the B5
algebra are given by

〈 Jab Jcd〉 = α0(ηadηbc − ηacηbd), (94)

〈 Jab Zcd〉 = α2(ηadηbc − ηacηbd), (95)

〈Pa Pc〉 = α2ηac, (96)

〈 Jab Pc〉 = α1εabc, (97)

〈 Jab Zc〉 = α3εabc, (98)

〈Zab Pc〉 = α3εabc, (99)

where α0, α1, α2 and α3 are arbitrary constants. Now if we use 
the components of the invariant tensor (94)–(99) in the general ex-
pression for a Chern–Simons Lagrangian we find the B5-invariant 
CS Lagrangian in (2 + 1) dimensions,

LB5
CS (2+1)

= 1

l
εabc

[
α1 Rabec + α3

(
1

3l2
eaebec + Rabhc + kab T c

)]

+ α0

2

(
ωa

bdωb
a + 2

3
ωa

bω
b

cω
c

a

)

+ α2

2

(
2

l2
ea Ta + ωa

bdkb
a + ka

bdωb
a + 2ωa

bω
b

ckc
a

)
.

(100)

The exterior derivative of this Lagrangian leads us to the following 
invariant polynomial,

PB5
(4)

= 1

l
εabc

[
α1 Rab T c

+ α3

(
1

l2
eaeb T c + Rab(Dωhc + kc

ded) + Dωkab T c
)]

+ α0

2
Ra

b Rb
a + α2

2

[
2

l2
(
T a Ta − eaeb Rab

) + 2Ra
b Dωkb

a

]
.

(101)

Thus we have shown that the S-expansion method allows us 
to relate the Pontryagin invariant of the Lorentz algebra with the 
invariants of the B5 algebra studied in the previous section.

It is important to note that it is possible to generalize the previ-
ous result to the case of the B2n+1 algebras. In fact, by considering 
the reduced S(2n−1)

E -expansion of the Lorentz algebra L and using 
the Theorem VII.2 of Ref. [13] we can find the non-vanishing com-
ponents of an invariant tensor for the expanded algebra and thus 
build a (2 + 1)-dimensional Lagrangian invariant under B2n+1.
6. Comment and possible developments

In the present work we have shown that it is possible to con-
struct an Einstein–Lovelock–Cartan Lagrangian that, in odd dimen-
sions leads to the Einstein–Chern–Simons Lagrangian, and in even 
dimensions leads to the Einstein–Born–Infeld Lagrangian. The EChS
and EBI theories are particularly interesting since it was shown in 
Refs. [9,11,12] that General Relativity can be obtained as a cer-
tain limit of these gravity theories. On the other hand we have 
shown that the Einstein–Lovelock–Cartan Lagrangian can be gen-
eralized adding torsional terms following a procedure analogous 
to that of Ref. [5]. Interestingly, the torsional terms appear explic-
itly in the Lagrangian only in 4p − 1 dimensions. Thus, the only 
4p-forms invariant under the generalized Poincaré algebra B2n+1, 
constructed from e(a,2k+1) , R(ab,2k) and T (a,2k+1) (k = 0, . . . , n − 1), 
are the Pontryagin invariants P (4p) . Finally we have established 
a relation between the Pontryagin and the Euler invariants us-
ing the dual formulation of the S-expansion method introduced 
in Ref. [17].

The procedure considered here could play an important role in 
the context of supergravity in higher dimensions. In fact, it seems 
likely that it is possible to recover the standard odd- and even-
dimensional supergravity from a Chern–Simons and Born–Infeld 
gravity theories, in a way very similar to the one shown here. 
In this way, the procedure sketched here could provide us with 
valuable information of what the underlyng geometric structure of 
supergravity could be (work in progress).
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