828 research outputs found
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model within the framework of large eddy simulation together with Lagrangian particle tracking. The particle drag coefficients are corrected depending on relative positions of the particles accounting for the strongest drag correction per particle but disregarding many-particle interactions. The approach is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels
Effects of a brief multimodal online intervention on the intention to conduct sun protective behaviours through targeting illness representations about skin cancer
__Objective:__ The incidence of skin cancer can be reduced by increasing sun protective behaviours. Based on the Common-Sense Model and the Intervention Mapping approach, a brief intervention targeting illness representations about skin cancer to increase the intention to conduct sun protective behaviours was developed and evaluated regarding its effectiveness.
__Design:__ A randomized pre-post control group design with 509 healthy participants (69% women, mean age 39 years). Main outcome measures: Changes in illness representations about skin cancer (emotional representations, illness coherence, and prevention control) and the intention to conduct sun protective behaviours, i.e. UV protection and sun avoidance.
__Results:__ ANCOVAs showed that the intervention increased illness coherence and perceived prevention control as well as the intention to conduct sun protective behaviours. Mediation analyses revealed that the increase in illness coherence and/or perceived prevention control partially mediated the effect of the intervention on the increase of the intention to use UV protection and to avoid sun exposure.
__Conclusion:__ The intervention was successful in changing illness representations and thereby increasing the intention to conduct sun protective behaviours. The findings provide evidence for the usefulness of the Common-Sense Model in the context of illness prevention
Buchbesprechungen / Book Reviews
LĂĽdecke, C., Fritzsche, D., Dullo, C., Thiede, J., Salewski, C. (2016): Book Reviews. Zoological Journal of the Linnean Society 176: 224-225, DOI: 10.2312/polarforschung.86.1.72, URL: http://dx.doi.org/10.2312/polarforschung.86.1.7
Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity
We acknowledge the financial support by the Deutsche Forschungsgemeinschaft through the Collaborative Research Centre TRR 142 and the International Collaborative Research Centre 160. S.V.P. and Yu.V.K. thank the Russian Foundation of Basic Research for partial financial support (contracts no. ofi_m 16-29-03115 and no. 15-52-12016NNIO_a). M.B. acknowledges partial financial support from the Russian Ministry of Science and Education (contract no. 14.Z50.31.0021). Yu.V.K. acknowledges Saint Petersburg State University for a research grant 11.42.993.2016. The project SPANGL4Q acknowledges financial support from the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant no. FP7-284743.We report on the coherent optical response from an ensemble of (In,Ga)As quantum dots (QDs) embedded in a planar Tamm-plasmon microcavity with a quality factor of approx. 100. Significant enhancement of the light-matter interaction is demonstrated under selective laser excitation of those quantum dots which are in resonance with the cavity mode. The enhancement is manifested through Rabi oscillations of the photon echo, demonstrating coherent control of excitons with picosecond pulses at intensity levels more than an order of magnitude smaller as compared with bare quantum dots. The decay of the photon echo transients is weakly changed by the resonator indicating a small decrease of the coherence time T2 which we attribute to the interaction with the electron plasma in the metal layer located close (40 nm) to the QD layer. Simultaneously we see a reduction of the population lifetime T1, inferred from the stimulated photon echo, due to an enhancement of the spontaneous emission by a factor of 2, which is attributed to the Purcell effect, while non-radiative processes are negligible as confirmed from time-resolved photoluminescence.PostprintPeer reviewe
Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots
We acknowledge the financial support by the Deutsche Forschungsgemeinschaft, Project ICRC TRR 160 and the Russian Foundation of Basic Research (RFBR) in the frame of the Project No. 15-52-12016 NNIO_a. The project SPANGL4Q acknowledges financial support from the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open Grant No. FP7-284743. S.V.P. thanks the RFBR for partial financial support (Project No. 14-02-31735 mol_a). S.V.P. and I.A.Yu. acknowledge partial financial support from the Ministry of Education and Science of the Russian Federation (Grant No. 11.G34.31.0067) and St-Petersburg State University (SPbU) (Grant No. 11.38.213.2014). M.B. acknowledges support from the Ministry of Education and Science of the Russian Federation (Grant No. 14.Z50.31.0021).An ensemble of quantum dot excitons may be used for coherent information manipulation. Due to the ensemble inhomogeneity any optical information retrieval occurs in form of a photon echo. We show that the inhomogeneity can lead to a significant deviation from the conventional echo timing sequence. Variation of the area of the initial rotation pulse, which generates excitons in a dot subensemble only, reveals this complex picture of photon echo formation. We observe a retarded echo for π/2 pulses, while for 3π/2 the echo is advanced in time as evidenced through monitoring the Rabi oscillations in the time-resolved photon echo amplitude from (In,Ga)As/GaAs self-assembled quantum dot structures and confirmed by detailed calculations.PostprintPeer reviewe
Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET
Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe the plasma simultaneously along vertical and oblique lines of sight. Parameters of the fast ion energy distribution, such as the high energy cut-off of the deuteron distribution function and the RF coupling constant, are determined from data within a uniform analysis framework for neutron and gamma-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution around the resonance, which is not correctly portrayed within the adopted one dimensional model. A framework to calculate neutron and gamma-ray emission from a spatially resolved, two-dimensional deuteron distribution specified by energy/pitch is thus developed and used for a first comparison with predictions from ab initio models of RF heating at multiple harmonics.
The results presented in this paper are of relevance for the development of advanced diagnostic techniques for MeV range ions in high performance fusion plasmas, with applications to the experimental validation of RF heating codes and, more generally, to studies of the energy distribution of ions in the MeV range in high performance deuterium and deuterium-tritium plasmas.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018
under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European
Commission.Postprint (author's final draft
Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code
Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative agreement between the experimental data and TRANSP predictions is only found when including strong additional fast-ion losses. These losses could in part be caused by turbulence or MHD activity as, e.g. high frequency modes near the frequency of toroidicity induced Alfven eignmodes are observed. In addition, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3-4 keV), combined with low electron densities (about 2 x 10(19) m(-3)) yield long mean free paths of the neutrals which are penetrating from the walls
Mixing in Circular and Non-circular Jets in Crossflow
Coherent structures and mixing in the flow field of a jet in crossflow have been studied using computational (large eddy simulation) and experimental (particle image velocimetry and laser-induced fluorescence) techniques. The mean scalar fields and turbulence statistics as determined by both are compared for circular, elliptic, and square nozzles. For the latter configurations, effects of orientation are considered. The computations reveal that the distribution of a passive scalar in a cross-sectional plane can be single- or double-peaked, depending on the nozzle shape and orientation. A proper orthogonal decomposition of the transverse velocity indicates that coherent structures may be responsible for this phenomenon. Nozzles which have a single-peaked distribution have stronger modes in transverse direction. The global mixing performance is superior for these nozzle types. This is the case for the blunt square nozzle and for the elliptic nozzle with high aspect ratio. It is further demonstrated that the flow field contains large regions in which a passive scalar is transported up the mean gradient (counter-gradient transport) which implies failure of the gradient diffusion hypothesis
- …