142 research outputs found

    Permafrost meta-omics and climate change

    Get PDF
    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change

    CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD‐GROWTH AMAZONIAN FOREST

    Get PDF
    Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1‐km transects of well‐drained old‐growth upland forest in the Tapajós National Forest near Santarém, Pará, Brazil (2°51′ S, 54°58′ W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh) ≥10 cm. The mean (and 95% ci) aboveground live biomass was 143.7 ± 5.4 Mg C/ha, with an additional 48.0 ± 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 ± 0.62 Mg C·ha−1·yr−1, the net result of growth (3.18 ± 0.20 Mg C·ha−1·yr−1 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 ± 0.09 Mg C·ha−1·yr−1, reflecting a notably high stem recruitment rate of 4.8 ± 0.9%), and mortality (−2.41 ± 0.53 Mg C·ha−1·yr−1 from stem death of 1.7% yr−1). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 ± 1.0 Mg C·ha−1·yr−1. The presence of large CWD pools, high recruitment rate, and net accumulation of small‐tree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Furthermore, the hypothesized sequestration flux from CO2 fertilization (\u3c0.5 Mg C·ha−1·yr−1) would be comparatively small and masked for considerable periods by climate‐driven shifts in forest structure and associated carbon balance in tropical forests

    Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees

    Get PDF
    Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests

    Amazon Forests Green-Up During 2005 Drought

    Full text link

    The role of ecosystem transpiration in creating alternate moisture regimes by influencing atmospheric moisture convergence

    Full text link
    The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these results by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and resulting water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling by additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation and for motivating and guiding ecological restoration.Comment: Revised version; response to the reviewers can be found in Appendix A, 39 pages, 11 figures, 2 table

    Host-linked soil viral ecology along a permafrost thaw gradient

    Get PDF
    Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling

    A new field instrument for leaf volatiles reveals an unexpected vertical profile of isoprenoid emission capacities in a tropical forest.

    Get PDF
    Both plant physiology and atmospheric chemistry are substantially altered by the emission of volatile isoprenoids (VI), such as isoprene and monoterpenes, from plant leaves. Yet, since gaining scientific attention in the 1950?s, empirical research on leaf VI has been largely confined to laboratory experiments and atmospheric observations. Here, we introduce a new field instrument designed to bridge the scales from leaf to atmosphere, by enabling precision VI detection in real time from plants in their natural ecological setting. With a field campaign in the Brazilian Amazon, we reveal an unexpected distribution of leaf emission capacities (EC) across the vertical axis of the forest canopy, with EC peaking in the mid-canopy instead of the sun-exposed canopy surface, and moderately high emissions occurring in understory specialist species. Compared to the simple interpretation that VI protect leaves from heat stress at the hot canopy surface, our results encourage a more nuanced view of the adaptive role of VI in plants. We infer that forest emissions to the atmosphere depend on the dynamic microenvironments imposed by canopy structure, and not simply on canopy surface conditions. We provide a new emissions inventory from 52 tropical tree species, revealing moderate consistency in EC within taxonomic groups. We highlight priorities in leaf volatiles research that require field-portable detection systems. Our self-contained, portable instrument provides real-time detection and live measurement feedback with precision and detection limits better than 0.5 nmolVI m-2 leaf s-1. We call the instrument ?PORCO? based on the gas detection method: photoionization of organic compounds. We provide a thorough validation of PORCO and demonstrate its capacity to detect ecologically driven variation in leaf emission rates and thus accelerate a nascent field of science: the ecology and ecophysiology of plant volatiles

    Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO2:CH4 Production Ratios During Anaerobic Decomposition

    Get PDF
    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 \u3e1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios
    corecore