8,058 research outputs found

    Masses and decay constants of Bc()B_c^{(*)} mesons with Nf=2+1+1N_f=2+1+1 twisted mass fermions

    Full text link
    We present a preliminary lattice determination of the masses and decay constants of the pseudoscalar and vector mesons BcB_c and BcB_c^*. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. Heavy-quark masses are simulated directly on the lattice up to 3\sim 3 times the physical charm mass. The physical b-quark mass is reached using the ETMC ratio method. Our preliminary results are: MBc=6341(60)M_{B_c} = 6341\,(60) MeV, fBc=396(12)f_{B_c} = 396\,(12) MeV, MBc/MBc=1.0037(39)M_{B_c^*} / M_{B_c} = 1.0037\,(39) and fBc/fBc=0.987(7)f_{B_c^*} / f_{B_c} = 0.987\,(7).Comment: 7 pages, 3 figures, 1 table; contribution to the proceedings of the XXXVI Int'l Workshop on Lattice Field Theory (LATTICE2018), July 22-28, 2018, East Lansing, Michigan State University (Michigan, USA

    Soliton pinning by long-range order in aperiodic systems

    Full text link
    We investigate propagation of a kink soliton along inhomogeneous chains with two different constituents, arranged either periodically, aperiodically, or randomly. For the discrete sine-Gordon equation and the Fibonacci and Thue-Morse chains taken as examples, we have found that the phenomenology of aperiodic systems is very peculiar: On the one hand, they exhibit soliton pinning as in the random chain, although the depinning forces are clearly smaller. In addition, solitons are seen to propagate differently in the aperiodic chains than on periodic chains with large unit cells, given by approximations to the full aperiodic sequence. We show that most of these phenomena can be understood by means of simple collective coordinate arguments, with the exception of long range order effects. In the conclusion we comment on the interesting implications that our work could bring about in the field of solitons in molecular (e.g., DNA) chains.Comment: 4 pages, REVTeX 3.0 + epsf, 3 figures in accompanying PostScript file (Submitted to Phys Rev E Rapid Comm

    Three dimensional imaging of short pulses

    Full text link
    We exploit a slightly noncollinear second-harmonic cross-correlation scheme to map the 3D space-time intensity distribution of an unknown complex-shaped ultrashort optical pulse. We show the capability of the technique to reconstruct both the amplitude and the phase of the field through the coherence of the nonlinear interaction down to a resolution of 10 μ\mum in space and 200 fs in time. This implies that the concept of second-harmonic holography can be employed down to the sub-ps time scale, and used to discuss the features of the technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure

    Reversible effect of magnetic fields on human lymphocyte activation patterns: different sensitivity of naive and memory lymphocyte subsets.

    Get PDF
    The aim of this study was to investigate the influence of 50 Hz magnetic or static magnetic fields of 0.5 mT on subsets of human CD4+ T cells in terms of cytokine release/content, cell proliferation and intracellular free calcium concentration. CD4+ T cells can be divided into different subsets on the basis of surface marker expression, such as CD45, and T cells can be divided into naive (CD45RA+) and memory (CD45RA2) cells. In this study, the effects of magnetic fields after 24 and 48 h of cell culture were analyzed. We found that the CD4+CD45RA2 T subset were more sensitive after 2 h of exposure. Decreases in the release/content of IFN-c, in cell proliferation and in intracellular free calcium concentrations were observed in exposed CD4+CD45RA2 T cells compared to CD4+CD45RA+ T cells. The results suggest that exposure to the magnetic fields induces a delay in the response to stimulants and that modifications are rapidly reversible, at least after a short exposure

    Quantum signatures of breather-breather interactions

    Full text link
    The spectrum of the Quantum Discrete Nonlinear Schr\"odinger equation on a periodic 1D lattice shows some interesting detailed band structure which may be interpreted as the quantum signature of a two-breather interaction in the classical case. We show that this fine structure can be interpreted using degenerate perturbation theory.Comment: 4 pages, 4 fig

    Correlated Component Analysis for diffuse component separation with error estimation on simulated Planck polarization data

    Get PDF
    We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributions to uncertainties on the component maps and on the CMB power spectra. For the Planck polarization case they are found to be subdominant compared to noise.Comment: 17 pages, accepted in MNRA

    Multi-component gap solitons in spinor Bose-Einstein condensates

    Full text link
    We model the nonlinear behaviour of spin-1 Bose-Einstein condensates (BECs) with repulsive spin-independent interactions and either ferromagnetic or anti-ferromagnetic (polar) spin-dependent interactions, loaded into a one-dimensional optical lattice potential. We show that both types of BECs exhibit dynamical instabilities and may form spatially localized multi-component structures. The localized states of the spinor matter waves take the form of vector gap solitons and self-trapped waves that exist only within gaps of the linear Bloch-wave band-gap spectrum. Of special interest are the nonlinear localized states that do not exhibit a common spatial density profile shared by all condensate components, and consequently cannot be described by the single mode approximation (SMA), frequently employed within the framework of the mean-field treatment. We show that the non-SMA states can exhibits Josephson-like internal oscillations and self-magnetisation, i.e. intrinsic precession of the local spin. Finally, we demonstrate that non-stationary states of a spinor BEC in a lattice exhibit coherent undamped spin-mixing dynamics, and that their controlled conversion into a stationary state can be achieved by the application of an external magnetic field.Comment: 12 pages, 13 figure

    Base sequence dependent sliding of proteins on DNA

    Get PDF
    The possibility that the sliding motion of proteins on DNA is influenced by the base sequence through a base pair reading interaction, is considered. Referring to the case of the T7 RNA-polymerase, we show that the protein should follow a noise-influenced sequence-dependent motion which deviate from the standard random walk usually assumed. The general validity and the implications of the results are discussed.Comment: 12 pages, 3 figure
    corecore