12 research outputs found

    Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics

    Get PDF
    We propose the use of water-based alkyl ketene dimer (AKD) ink for fast and user-friendly patterning of paper microfluidic devices either manually or using an inexpensive XY-plotter. The ink was produced by dissolving hydrophobic AKD in chloroform and emulsifying the solution in water. The emulsification was performed in a warm water bath, which led to an increased rate of the evaporation of chloroform. Subsequent cooling led to the final product, an aqueous suspension of fine AKD particles. The effects of surfactant and AKD concentrations, emulsification procedure, and cooling approach on final ink properties are presented, along with an optimized protocol for its formulation. This hydrophobic agent was applied onto paper using a plotter pen, after which the paper was heated to allow spreading of AKD molecules and chemical bonding with cellulose. A paper surface patterned with the ink (10 g L-1 AKD) yielded a contact angle of 135.6° for water. Unlike organic solvent-based solutions of AKD, this AKD ink does not require a fume hood for its use. Moreover, it is compatible with plastic patterning tools, due to the effective removal of chloroform in the production process to less than 2% of the total volume. Furthermore, this water-based ink is easy to prepare and use. Finally, the AKD ink can also be used for the fabrication of so-called selectively permeable barriers for use in paper microfluidic networks. These are barriers that stop the flow of water through paper, but are permeable to solvents with lower surface energies. We applied the AKD ink to confine and preconcentrate sample on paper, and demonstrated the use of this approach to achieve higher detection sensitivities in paper spray ionization-mass spectrometry (PSI-MS). Our patterning approach can be employed outside of the analytical lab or machine workshop for fast prototyping and small-scale production of paper-based analytical tools, for use in limited-resource labs or in the field

    Enhanced passive mixing for paper microfluidics

    Get PDF
    Imprecise control of fluid flows in paper-based devices is a major challenge in pushing the innovations in this area towards societal implementation. Assays on paper tend to have low reaction yield and reproducibility issues that lead to poor sensitivity and detection limits. Understanding and addressing these issues is key to improving the performance of paper-based devices. In this work, we use colorimetric analysis to observe the mixing behaviour of molecules from two parallel flow streams in unobstructed (on unpatterned paper) and constricted flow (through the gap of a patterned hourglass structure). The model system used for characterization of mixing involved the reaction of Fe 3+ with SCN À to form the coloured, soluble complex Fe(SCN)2+ . At all tested concentrations (equal concentrations of 50.0 mM, 25.0 mM or 12.5 mM for KSCN and FeCl 3 in each experiment), the reaction yield increases (higher colorimetric signal) and better mixing is obtained (lower relative standard deviation) as the gap of the flow constriction becomes smaller (4.69–0.32 mm). This indicates enhanced passive mixing of reagents. A transition window of gap widths exhibiting no mixing enhancement (about 2 mm) to gap widths exhibiting complete mixing (0.5 mm) is defined. The implementation of gap sizes that are smaller than 0.5 mm (below the transition window) for passive mixing is suggested as a good strategy to obtain complete mixing and reproducible reaction yields on paper. In addition, the hourglass structure was used to define the ratio of reagents to be mixed (2 : 1, 1 : 1 and 1 : 2 HCl–NaOH) by simply varying the width ratio of the input channels of the paper. This allows easy adaptation of the device to reaction stoichiometry

    Countercurrent liquid-liquid extraction on paper

    Get PDF
    Proof-of-concept is shown for two-phase countercurrent flow on paper. The device consists of two paper layers, one of which has been modified with a sizing agent to be hydrophobic. The layers exhibit different wetting behavior for water and octanol. Both phases dominate wetting in one of the layers and can be made to move in different directions along the interface to achieve liquid-liquid extraction

    Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications

    No full text
    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples

    Interconnectable solid-liquid protein extraction unit and chip-based dilution for multiplexed consumer immunodiagnostics

    No full text
    While consumer-focused food analysis is upcoming, the need for multiple sample preparation and handling steps is limiting. On-site and consumer-friendly analysis paradoxically still requires laboratory-based and skill-intensive sample preparation methods. Here, we present a compact, inexpensive, and novel prototype immunosensor combining sample preparation and on-chip reagent storage for multiplex allergen lateral flow immunosensing. Our comprehensive approach paves the way for personalized consumer diagnostics. The prototype allows for handheld solid-liquid extraction, pipette-free on-chip dilution, and adjustment of sample concentrations into the appropriate assay dynamic working range. The disposable and interconnectable homogenizer unit allows for the extraction and 3D-sieve based filtration of allergenic proteins from solid bakery products in 1 min. The homogenizer interconnects with a 3D-printed unibody lab-on-a-chip (ULOC) microdevice, which is used to deliver precise volumes of sample extract to a reagent reservoir. The reagent reservoir is implemented for on-chip storage of carbon nanoparticle labeled antibodies and running buffer for dilution. The handheld prototype allows for total homogenization of solid samples, solid-liquid protein extraction, 3D-printed sieve based filtration, ULOC-enabled dilution, mixing, transport, and smartphone-based detection of hazelnut and peanut allergens in solid bakery products with limited operational complexity. The multiplex lateral flow immunoassay (LFIA) detects allergens as low as 0.1 ppm in real bakery products, and the system is already consumer-operable, demonstrating its potential for future citizen science approaches. The designed system is suitable for a wide range of analytical applications outside of food safety, provided an LFIA is available

    3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features

    No full text
    We report the development of a 3D-printed cartridge for paper spray ionization (PSI) that can be used almost immediately after solvent introduction in a dedicated reservoir and allows prolonged spray generation from a paper tip. The fast wetting feature described in this work is based on capillary action through paper and movement of fluid between paper and the cartridge material (polylactic acid, PLA). The influence of solvent composition, PLA conditioning of the cartridge with isopropanol, and solvent volume introduced into the reservoir have been investigated with relation to wetting time and the amount of solvent consumed for wetting. Spray has been demonstrated with this cartridge for tens of minutes, without any external pumping. It is shown that fast wetting and spray generation can easily be achieved using a number of solvent mixtures commonly used for PSI. The PSI cartridge was applied to the analysis of lidocaine from a paper tip using different solvent mixtures, and to the analysis of lidocaine from a serum sample. Finally, a demonstration of online paper chromatography–mass spectrometry is given

    Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications

    Get PDF
    In this work, the use of fused deposition modeling (FDM) in a (bio)­analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)­devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)­analytical research by demonstrating a broad range of illustrative examples

    A portable smartphone-based imaging surface plasmon resonance biosensor for allergen detection in plant-based milks

    No full text
    Food allergies are hypersensitivity immune responses triggered by (traces of) allergenic compounds in foods and drinks. The recent trend towards plant-based and lactose-free diets has driven an increased consumption of plant-based milks (PBMs) with the risk of cross-contamination of various allergenic plant-based proteins during the food manufacturing process. Conventional allergen screening is usually performed in the laboratory, but portable biosensors for on-site screening of food allergens at the production site could improve quality control and food safety. Here, we developed a portable smartphone imaging surface plasmon resonance (iSPR) biosensor composed of a 3D-printed microfluidic SPR chip for the detection of total hazelnut protein (THP) in commercial PBMs and compared its instrumentation and analytical performance with a conventional benchtop SPR. The smartphone iSPR shows similar characteristic sensorgrams compared with the benchtop SPR and enables the detection of trace levels of THP in spiked PBMs with the lowest tested concentration of 0.625 μg/mL THP. The smartphone iSPR achieved LoDs of 0.53, 0.16, 0.14, 0.06, and 0.04 μg/mL THP in 10x-diluted soy, oat, rice, coconut, and almond PBMs, respectively, with good correlation with the conventional benchtop SPR system (R2 0.950–0.991). The portability and miniaturized characteristics of the smartphone iSPR biosensor platform make it promising for the future on-site detection of food allergens by food producers
    corecore