66 research outputs found

    Assessing dolomite surface reactivity at temperatures from 40 to 120 degrees C by hydrothermal atomic force microscopy

    Get PDF
    This study investigated the reactivity of the (1 0 4) dolomite surface in the system MgCO3–CaCO3–NaCl–H2O via a suite of aqueous solution–dolomite hydrothermal atomic force microscopy interaction experiments at temperatures from 40 to 120 °C, pH ranging from 4 to 8, pressures up to 5 bars, and over a wide range of aqueous fluid saturation state. Dolomite dissolution was observed in the presence of undersaturated aqueous fluids. Dissolution produced crystallographically well defined etch pits, consistent with the stoichiometric release of ordered lattice cations. In low to moderately saturated fluids, dolomite growth began by the growth of one or two layers of carbonate (layer height <3 Å) which morphologically reproduced the initial surface features, resembling the template effect as previously described by Astilleros et al. (2003, 2006) and Freij et al. (2004). Further growth was strongly inhibited and did not show any systematic crystallographically orientated growth morphologies. At aqueous fluid saturation states exceeding 500, nucleation and growth was observed on the dolomite surfaces at moderate rates, but these did not exhibit the characteristic dolomite crystallographic orientation after the growth of several layers. Taken together these observations suggest that the direct precipitation of dolomite from aqueous solution is disfavored at temperatures to at least 120 °C due to the poisoning of the dolomite surface for further growth by the precipitation of one to four Ca–Mg carbonate layers on these surfaces

    A collective effort to identify and quantify geo-energy risks

    Get PDF
    The increasing global demand for energy and the imminent need to reduce carbon emissions in our planet has led mankind to find new solutions. Some in the energy industry have taken special interest in geothermal reservoirs, a resource with the potential to provide large amounts of renewable energy. Meanwhile, the storage of carbon dioxide in underground geological formations presents a fantastic opportunity to discard CO2 and mitigate global warming. This study links efforts from academic institutions, industry energy operators, industrial partners and research institutes to answer fundamental scientific questions that can help us understand the subsurface and generate better exploitation practices. We examine the geology of reservoirs used for geothermal energy extraction and carbon dioxide capture. We use a combination of field geology, photogrammetry, mineral analysis and experimental rock mechanics to understand fracture networks and fluid flow paths of two geologically diverse reservoirs in Europe: 1) the Hengill geothermal system in south-west Iceland, and 2) the Carnmenellis granite geothermal system in Cornwall (UK). These results aim to provide experimental data to refine numerical models predicting fluid flow and contribute to the quantification of the associated risks of exploiting the subsurface

    GaMin’11 – an International Inter-laboratory Comparison for Geochemical CO2 - Saline Fluid - Mineral Interaction Experiments

    Get PDF
    Due to the strong interest in geochemical CO2-fluid-rock interaction in the context of geological storage of CO2 a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies

    The effect of pH, grain size, and organic ligands on biotite weathering rates

    Get PDF
    Biotite dissolution rates were determined at 25 °C, at pH 2–6, and as a function of mineral composition, grain size, and aqueous organic ligand concentration. Rates were measured using both open- and closed-system reactors in fluids of constant ionic strength. Element release was non-stoichiometric and followed the general trend of Fe, Mg > Al > Si. Biotite surface area normalised dissolution rates (ri) in the acidic range, generated from Si release, are consistent with the empirical rate law: ri=kH,iaxiH+ where kH,i refers to an apparent rate constant, aH+ designates the activity of protons, and xi stands for a reaction order with respect to protons. Rate constants range from 2.15 × 10−10 to 30.6 × 10−10 (molesbiotite m−2 s−1) with reaction orders ranging from 0.31 to 0.58. At near-neutral pH in the closed-system experiments, the release of Al was stoichiometric compared to Si, but Fe was preferentially retained in the solid phase, possibly as a secondary phase. Biotite dissolution was highly spatially anisotropic with its edges being ∌120 times more reactive than its basal planes. Low organic ligand concentrations slightly enhanced biotite dissolution rates. These measured rates illuminate mineral–fluid–organism chemical interactions, which occur in the natural environment, and how organic exudates enhance nutrient mobilisation for microorganism acquisition

    The assisi think tank meeting breast large database for standardized data collection in breast cancer\u2014attm.Blade

    Get PDF
    Background: During the 2016 Assisi Think Tank Meeting (ATTM) on breast cancer, the panel of experts proposed developing a validated system, based on rapid learning health care (RLHC) principles, to standardize inter-center data collection and promote personalized treatments for breast cancer. Material and Methods: The seven-step Breast LArge DatabasE (BLADE) project included data collection, analysis, application, and evaluation on a data-sharing platform. The multidisciplinary team developed a consensus-based ontology of validated variables with over 80% agreement. This English-language ontology constituted a breast cancer library with seven knowledge domains: baseline, primary systemic therapy, surgery, adjuvant systemic therapies, radiation therapy, followup, and toxicity. The library was uploaded to the BLADE domain. The safety of data encryption and preservation was tested according to General Data Protection Regulation (GDPR) guidelines on data from 15 clinical charts. The system was validated on 64 patients who had undergone post-mastectomy radiation therapy. In October 2018, the BLADE system was approved by the Ethical Committee of Fondazione Policlinico Gemelli IRCCS, Rome, Italy (Protocol No. 0043996/18). Results: From June 2016 to July 2019, the multidisciplinary team completed the work plan. An ontology of 218 validated variables was uploaded to the BLADE domain. The GDPR safety test confirmed encryption and data preservation (on 5000 random cases). All validation benchmarks were met. Conclusion: BLADE is a support system for follow-up and assessment of breast cancer care. To successfully develop and validate it as the first standardized data collection system, multidisciplinary collaboration was crucial in selecting its ontology and knowledge domains. BLADE is suitable for multi-center uploading of retrospective and prospective clinical data, as it ensures anonymity and data privacy

    Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis

    Get PDF
    Background Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Methods Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. Results We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Conclusions Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA

    Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis

    Get PDF
    BACKGROUND: Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. METHODS: Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. RESULTS: We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. CONCLUSIONS: Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA

    Drug discovery: Insights from the invertebrate Caenorhabditis elegans

    Get PDF
    Therapeutic drug development is a long, expensive, and complex process that usually takes 12–15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.Fil: Giunti, SebastiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Andersen, Natalia Denise. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Rayes, Diego HernĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: de Rosa, Maria Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; Argentin

    Regulatory feedback from nascent RNA to chromatin and transcription

    Get PDF
    Transcription and chromatin function are regulated by proteins that bind to DNA, nucleosomes or RNA polymerase II, with specific non-coding RNAs (ncRNAs) functioning to modulate their recruitment or activity. Unlike ncRNAs, nascent pre-mRNA was considered to be primarily a passive player in these processes. In this Opinion article, we describe recently identified interactions between nascent pre-mRNAs and regulatory proteins, highlight commonalities between the functions of nascent pre-mRNA and nascent ncRNA, and propose that both types of RNA have an active role in transcription and chromatin regulation

    Estimating the prevalence of functional exonic splice regulatory information

    Get PDF
    • 

    corecore