4,527 research outputs found

    Limitations on the superposition principle: superselection rules in non-relativistic quantum mechanics

    Get PDF
    The superposition principle is a very basic ingredient of quantum theory. What may come as a surprise to many students, and even to many practitioners of the quantum craft, is tha superposition has limitations imposed by certain requirements of the theory. The discussion of such limitations arising from the so-called superselection rules is the main purpose of this paper. Some of their principal consequences are also discussed. The univalence, mass and particle number superselection rules of non-relativistic quantum mechanics are also derived using rather simple methods.Comment: 22 pages, no figure

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    Exact T=0 Partition Functions for Potts Antiferromagnets on Sections of the Simple Cubic Lattice

    Full text link
    We present exact solutions for the zero-temperature partition function of the qq-state Potts antiferromagnet (equivalently, the chromatic polynomial PP) on tube sections of the simple cubic lattice of fixed transverse size Lx×LyL_x \times L_y and arbitrarily great length LzL_z, for sizes Lx×Ly=2×3L_x \times L_y = 2 \times 3 and 2×42 \times 4 and boundary conditions (a) (FBCx,FBCy,FBCz)(FBC_x,FBC_y,FBC_z) and (b) (PBCx,FBCy,FBCz)(PBC_x,FBC_y,FBC_z), where FBCFBC (PBCPBC) denote free (periodic) boundary conditions. In the limit of infinite-length, Lz→∞L_z \to \infty, we calculate the resultant ground state degeneracy per site WW (= exponent of the ground-state entropy). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the analytic structure of WW and the related singular locus B{\cal B} which is the continuous accumulation set of zeros of the chromatic polynomial. For the Lz→∞L_z \to \infty limit of a given family of lattice sections, WW is analytic for real qq down to a value qcq_c. We determine the values of qcq_c for the lattice sections considered and address the question of the value of qcq_c for a dd-dimensional Cartesian lattice. Analogous results are presented for a tube of arbitrarily great length whose transverse cross section is formed from the complete bipartite graph Km,mK_{m,m}.Comment: 28 pages, latex, six postscript figures, two Mathematica file

    The Power Spectrum in de Sitter Inflation, Revisited

    Get PDF
    We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar (inflaton) field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble's scale at the inflationary period, it is determined by the square of the mass of the inflaton fluctuation field.Comment: 4 page

    New non-unitary representations in a Dirac hydrogen atom

    Full text link
    New non-unitary representations of the SU(2) algebra are introduced for the case of the Dirac equation with a Coulomb potential; an extra phase, needed to close the algebra, is also introduced. The new representations does not require integer or half integer labels. The set of operators defined are used to span the complete space of bound state eigenstates of the problem thus solving it in an essentially algebraic way

    Generation of thermo-sensitive allele of the TPR like protein Nup211by PCR mutagenesis

    Get PDF
    Motivation: TPR proteins are conserved large coiled-coil proteins that localize at the nucleoplasmic side of the nuclear pore complex and participate in multiple aspects of DNA metabolism. The protein Nup211, fission yeast homolog of Mlp1/Mlp2/Tpr, participate in the mRNA export and is essential for vegetative growth. The aim of this work is to create a collection of thermo-sensitive alleles of nup211.Methods: To create the collection, we have generated a new strain with the nup211 gen tagged with GFP at the amino terminal extreme and confirmed by fluorescent microscopy that the protein Nup211 localized in the nuclear envelop. Then, we have carried out a Taq PCR-based Random Mutagenesis with reduced concentration of dATP. The PCR products were transformed into a wild type strain to generate conditional mutants. The transformants obtained whose growth was impaired at 36ÂșC were preselected as thermo-sensitive mutants. To confirm the growth deficiency of these clones, a drop assay was performed and the best candidates were selected. These thermo-sensitive mutants were cultivated at 25ÂșC as well as 36ÂșC and both cultures were subjected to various experiments in order to study any changes in the localization of Nup211.Results: Up to now, we have demonstrated by fluorescent microscopy that the thermo-sensitive mutants show a modified nuclear distribution of Nup211 and different cellular phenotype, suggesting that the differents clones might represent differents nup211 thermo-sensitive alleles. These alleles are going to be subjected to various experiments to clarify the role of the protein in the mRNA export

    A useful form of the recurrence relation between relativistic atomic matrix elements of radial powers

    Full text link
    Recently obtained recurrence formulae for relativistic hydrogenic radial matrix elements are cast in a simpler and perhaps more useful form. This is achieved with the help of a new relation between the rar^a and the ÎČrb\beta r^b terms (ÎČ\beta is a 4×44\times 4 Dirac matrix and a,ba, b are constants) in the atomic matrix elements.Comment: 7 pages, no figure
    • 

    corecore