8 research outputs found

    Fabrication and characterization of PVA/ODA-MMT-poly(MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells

    No full text
    WOS: 000370303600033PubMed: 26838849This work presents a new approach to fabrication and characterization of novel polymer nanofiber electrolytes from intercalated PVA/ODA-MMT nanocomposite as a matrix polymer and encapsulated graphene oxide (GO) nanosheets with amphiphilic reactive copolymer as partner polymers using electrospinning method. The chemical and physical structures, surface morphology, thermal behaviors and electric conductivity of nanocomposites and nanofibers were investigated using analyses methods including FTIR, XRD, SEM, DSC-TGA and conductivity analysis. Significant improvements in nanofiber morphology and size distribution were observed when GO and reactive organoclay were incorporated as reinforcement fillers into various matrix/partner solution blends. The structural factors of matrix-partner polymer nanocomposite particles with higher zeta-potential play important roles in both chemical and physical interfacial interactions and phase separation processing and also lead to the formation of nanofibers with unique surface morphologies and good conductivities. The cytotoxic, necrotic and apoptotic effects of chosen nanofibers on osteocarcinoma cells were also investigated. These multifunctional, self-assembled, nanofibrous surfaces can serve as semi-conductive and bioactive platforms in various electrochemical and bio-engineering processes, as well as reactive matrices used for the immobilization of various biopolymer pfecursors. (C) 2015 Elsevier B.V. All rights reserved.Turkish Scientific and Technological Research Council (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TBAG-HD/249, BIDEB-PD/2218]The authors thank the Turkish Scientific and Technological Research Council (TUBITAK) for the financial supports of this work through postdoctoral projects TBAG-HD/249 and BIDEB-PD/2218

    Novel multifunctional colloidal carbohydrate nanofiber electrolytes with excellent conductivity and responses to bone cancer cells

    No full text
    Gokmen, Fatma Ozge/0000-0002-5548-8790WOS: 000361920900075PubMed: 26344321This work presents a new approach to fabricating novel polymer nanofiber composites (NFCs) from water solution blends of PVA (hydrolyzed 89%)/ODA-MMT and Na-CMC/ODA-MMT nanocomposites as well as their folic acid (FA) incorporated modifications (NC-3-FA and NC-4-FA) through green electrospinning nanotechnology. The chemical and physical structures and surface morphology of the nanofiber composites were confirmed. Significant improvements in nanofiber morphology and size distribution of the NFC-3-FA and NFC-4-FA nanofibers with lower average means 110 and 113 nm compared with those of NFC-1/NFC-2 nanofibers (270 and 323 nm) were observed. The structural elements of polymer NFCs, particularly loaded partner NC-2, plays an important role in chemical and physical interfacial interactions, phase separation processing and enables the formation of nanofibers with unique morphology and excellent conductivity (NFC-3-FA 3.25 x 10(-9) S/cm and NFC-4-FA 8.33 x 10(-4) S/cm). This is attributed to the higher surface contact areas and multifunctional self-assembled supramacromolecular nanostructures of amorphous colloidal electrolytes. The anticancer activity of FA-containing nanofibers against osteocarcinoma cells were evaluated by cytotoxicity, apoptotic and necrotic analysis methods. (C) 2015 Elsevier Ltd. All rights reserved.Turkish Scientific and Technological Research Council (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TBAG-HD/249, BIDEB-PD/2218]The authors would like to acknowledge the Turkish Scientific and Technological Research Council (TUBITAK) for the financial support of this work through postdoctoral projects TBAG-HD/249 and BIDEB-PD/2218

    The genome of the western clawed frog xenopus tropicalis

    Get PDF
    The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage
    corecore