36 research outputs found

    K-theoretical boundary rings in N=2 coset models

    Full text link
    A boundary ring for N=2 coset conformal field theories is defined in terms of a twisted equivariant K-theory. The twisted equivariant K-theories K_H(G) for compact Lie groups (G, H) such that G/H is hermitian symmetric are computed. These turn out to have the same ranks as the N=2 chiral rings of the associated coset conformal field theories, however the product structure differs from that on chiral primaries. In view of the K-theory classification of D-brane charges this suggests an interpretation of the twisted K-theory as a `boundary ring'. Complementing this, the N=2 chiral ring is studied in view of the isomorphism between the Verlinde algebra V_k(G) and twisted K_G(G) as proven by Freed, Hopkins and Teleman. As a spin-off, we provide explicit formulae for the ranks of the Verlinde algebras.Comment: 22 pages, harvmac (b); reference added, table 2 beautifie

    Therapeutic versus neuroinflammatory effects of passive immunization is dependent on Abeta/amyloid burden in a transgenic mouse model of Alzheimer's disease

    Get PDF
    Abstract Background Passive immunization with antibodies directed to Aβ decreases brain Aβ/amyloid burden and preserves memory in transgenic mouse models of Alzheimer's disease (AD). This therapeutic strategy is under intense scrutiny in clinical studies, but its application is limited by neuroinflammatory side effects (autoimmune encephalitis and vasogenic edema). Methods We intravenously administered the monoclonal Aβ protofibril antibody PFA1 to aged (22 month) male and female 3 × tg AD mice with intermediate or advanced AD-like neuropathologies, respectively, and measured brain and serum Aβ and CNS cytokine levels. We also examined 17 month old 3 × tg AD female mice with intermediate pathology to determine the effect of amyloid burden on responses to passive immunization. Results The 22 month old male mice immunized with PFA1 had decreased brain Aβ, increased serum Aβ, and no change in CNS cytokine levels. In contrast, 22 month old immunized female mice revealed no change in brain Aβ, decreased serum Aβ, and increased CNS cytokine levels. Identical experiments in younger (17 month old) female 3 × tg AD mice with intermediate AD-like neuropathologies revealed a trend towards decreased brain Aβ and increased serum Aβ accompanied by a decrease in CNS MCP-1. Conclusions These data suggest that passive immunization with PFA1 in 3 × tg AD mice with intermediate disease burden, regardless of sex, is effective in mediating potentially therapeutic effects such as lowering brain Aβ. In contrast, passive immunization of mice with a more advanced amyloid burden may result in potentially adverse effects (encephalitis and vasogenic edema) mediated by certain proinflammatory cytokines.http://deepblue.lib.umich.edu/bitstream/2027.42/78261/1/1742-2094-7-57.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78261/2/1742-2094-7-57.pdfPeer Reviewe

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p

    Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD

    Full text link
    Frontotemporal dementia (FTD) is the most common cause of dementia in people under 60 yr of age and is pathologically associated with mislocalization of TAR DNA/RNA binding protein 43 (TDP-43) in approximately half of cases (FLTD-TDP). Mutations in the gene encoding progranulin (GRN), which lead to reduced progranulin levels, are a significant cause of familial FTLD-TDP. Grn-KO mice were developed as an FTLD model, but lack cortical TDP-43 mislocalization and neurodegeneration. Here, we report retinal thinning as an early disease phenotype in humans with GRN mutations that precedes dementia onset and an age-dependent retinal neurodegenerative phenotype in Grn-KO mice. Retinal neuron loss in Grn-KO mice is preceded by nuclear depletion of TDP-43 and accompanied by reduced expression of the small GTPase Ran, which is a master regulator of nuclear import required for nuclear localization of TDP-43. In addition, TDP-43 regulates Ran expression, likely via binding to its 3′-UTR. Augmented expression of Ran in progranulin-deficient neurons restores nuclear TDP-43 levels and improves their survival. Our findings establish retinal neurodegeneration as a new phenotype in progranulin-deficient FTLD, and suggest a pathological loop involving reciprocal loss of Ran and nuclear TDP-43 as an underlying mechanism

    Extracellular vesicle-based liquid biopsies in cancer: Future biomarkers for oral cancer

    No full text
    Oral cancer is the sixth most common cancer worldwide, with approximately 530,000 new cases and 300,000 deaths each year. The process of carcinogenesis is complex, and survival rates have not changed significantly in recent decades. Early detection of cancer, prognosis prediction, treatment selection, and monitoring of progression are important to improve survival.With the recent significant advances in analytical technology, liquid biopsy has made it possible to achieve these goals. In this review, we report new results from clinical and cancer research applications of liquid biopsy, focusing on extracellular vesicles (EVs) among the major targets of liquid biopsy, namely, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and EVs. In addition, the potential application of EVs derived from gram-negative bacteria (outer membrane vesicles; OMVs) among oral bacteria, which have recently attracted much attention, to liquid biopsy for oral cancer will also be addressed

    No predialysis treatment of blood primes in pediatric continuous kidney replacement therapy

    No full text
    Abstract Background Pediatric continuous kidney replacement therapy (CKRT) uses blood as the priming fluid in the CKRT circuit to prevent hemodilution and hypotension and is dialyzed using a dialysate before the start of CKRT. This study aimed to investigate the safety of CKRT using a protocol of no predialysis after blood priming in underweight infants, based on hemodynamic and laboratory data changes. Methods This single-center retrospective cohort study included children weighing  95% of the levels before extracorporeal circulation. Moreover, potassium levels, which were not significantly different between extracorporeal circulation and dialysis initiation (p = 1.000), were significantly decreased after dialysis (p = 0.046). Lactate and hematocrit did not significantly change either before dialysis (p = 0.131 and 0.071, respectively) or after dialysis compared to the time of extracorporeal circulation (p = 1.000 and 0.591, respectively). Conclusions CKRT, using our protocol, could be safely performed without predialysis treatment of blood primes in children weighing < 5 kg
    corecore