224 research outputs found

    Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing

    Get PDF
    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film—L-dopa, dopamine, norepinephrine, and epinephrine—with thicknesses in the range of 7–27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3 to 47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na+, K+, Ca2+) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena

    T細胞リンパ腫の支持環境細胞クローン進化の解析

    Get PDF
    科学研究費助成事業 研究成果報告書:挑戦的萌芽研究2016-2017課題番号 : 16K1549

    Multistep tumorigenesis in peripheral T cell lymphoma

    Get PDF
    Peripheral T cell lymphomas (PTCL) are classified as mature T cell neoplasms. However, several new findings support the notion that premalignant cells arise in the immature stage of hematopoietic differentiation, and subsequently evolve into full-blown T-lineage tumor cells. Acquisition of (Ten-Eleven Translocation 2) TET2 mutations may be an important event for the establishment of premalignant cells. In PTCL harboring features of follicular helper T cells, tumor-specific G17V RHOA mutations co-occur with premalignant TET2 mutations. The G17V (ras homolog family member A) RHOA mutations may play important roles in clonal evolution of premalignant cells into tumor cells. Indeed, multistep tumorigenesis is thought to be essential for pathogenesis of PTCL

    Droplet digital polymerase chain reaction assay and peptide nucleic acid-locked nucleic acid clamp method for RHOA mutation detection in angioimmunoblastic T-cell lymphoma

    Get PDF
    Angioimmunoblastic T‐cell lymphoma (AITL) is a subtype of nodal peripheral T‐cell lymphoma (PTCL). Somatic RHOA mutations, most frequently found at the hotspot site c.50G > T, p.Gly17Val (G17V RHOA mutation) are a genetic hallmark of AITL. Detection of the G17V RHOA mutations assists prompt and appropriate diagnosis of AITL. However, an optimal detection method for the G17V RHOA mutation remains to be elucidated. We compared the sensitivity and concordance of next‐generation sequencing (NGS), droplet digital PCR (ddPCR) and peptide nucleic acid‐locked nucleic acid (PNA‐LNA) clamp method for detecting the G17V RHOA mutation. G17V RHOA mutations were identified in 27 of 67 (40.3%) PTCL samples using NGS. ddPCR and PNA‐LNA clamp method both detected G17V mutations in 4 samples in addition to those detected with NGS (31 of 67, 46.3%). Additionally, variant allele frequencies with ddPCR and those with NGS showed high concordance (P T;50G > T], p.Gly17Leu in PTCL198; c.[50G > T;51A > C], p.Gly17Val in PTCL216; and c.50G > A, p.Gly17Glu in PTCL223) were detected using NGS. These sequence changes could not appropriately be detected using the ddPCR assay and the PNA‐LNA clamp method although both indicated that the samples might have mutations. In total, 34 out of 67 PTCL samples (50.7%) had RHOA mutations at the p.Gly17 position. In conclusion, our results suggested that a combination of ddPCR/PNA‐LNA clamp methods and NGS are best method to assist the diagnosis of AITL by detecting RHOA mutations at the p.Gly17 position

    Activation of RHOA–VAV1 signaling in angioimmunoblastic T-cell lymphoma

    Get PDF
    Somatic G17V RHOA mutations were found in 50–70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA: VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR) signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further identified VAV1 mutations and a new translocation, VAV1–STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%), whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was also demonstrated in VAV1–STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and the associating TCR signaling by both G17V RHOA and VAV1–STAP2 expression. Phospho-VAV1 staining was demonstrated in the clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that the G17V RHOA–VAV1 axis may provide a new therapeutic target in AITL

    Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma

    Get PDF
    Recent sequencing studies demonstrated the MYD88 L265P mutation in more than 70% of primary central nervous system lymphomas (PCNSL), and the clinical significance of this mutation has been proposed as diagnostic and prognostic markers in PCNSL. In contrast, mutational analyses using cell-free DNAs have been reported in a variety of systemic lymphomas. To investigate how sensitively the MYD88 L265P mutation can be identified in cell-free DNA from PCNSL patients, we carried out droplet digital PCR (ddPCR) and targeted deep sequencing (TDS) in 14 consecutive PCNSL patients from whom paired tumor-derived DNA and cell-free DNA was available at diagnosis. The MYD88 L265P mutation was found in tumor-derived DNA from all 14 patients (14/14, 100%). In contrast, among 14 cell-free DNAs evaluated by ddPCR (14/14) and TDS (13/14), the MYD88 L265P mutation was detected in eight out of 14 (ddPCR) and in 0 out of 13 (TDS) samples, implying dependence on the detection method. After chemotherapy, the MYD88 L265P mutation in cell-free DNAs was traced in five patients; unexpectedly, the mutations disappeared after chemotherapy was given, and they remained undetectable in all patients. These observations suggest that ddPCR can sensitively detect the MYD88 L265P mutation in cell-free DNA and could be used as non-invasive diagnostics, but may not be applicable for monitoring minimal residual diseases in PCNSL

    An Unprecedented Case of p190 BCR-ABL Chronic Myeloid Leukemia Diagnosed during Treatment for Multiple Myeloma: A Case Report and Review of the Literature

    Get PDF
    We report the case of a 76-year-old man who was diagnosed as having chronic myeloid leukemia (CML) with p190 BCR-ABL while receiving treatment for symptomatic multiple myeloma (MM). The diagnosis of MM was based on the presence of serum M-protein, abnormal plasma cells in the bone marrow, and lytic bone lesions. The patient achieved a partial response to lenalidomide and dexamethasone treatment. However, 2 years after the diagnosis of MM, the patient developed leukocytosis with granulocytosis, anemia, and thrombocytopenia. Bone marrow examination revealed Philadelphia chromosomes and chimeric p190 BCR-ABL mRNA. Fluorescence in situ hybridization also revealed BCR-ABL-positive neutrophils in the peripheral blood, which suggested the emergence of CML with p190 BCR-ABL. The codevelopment of MM and CML is very rare, and this is the first report describing p190 BCR-ABL-type CML coexisting with MM. Moreover, we have reviewed the literature regarding the coexistence of these diseases

    Molecular basis of targeted therapy in T/NKcell lymphoma/leukemia: A comprehensive genomic and immunohistochemical analysis of a panel of 33 cell lines

    Get PDF
    T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome, in which targeted treatments are still at a preliminary phase. To gain deeper insights into the deregulated mechanisms promoting this disease, we searched a panel of 31 representative T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to targeted therapy. To this end, targeted sequencing was performed alongside the expression of specific biomarkers corresponding to potentially activated survival pathways. The study identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT (44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lymphoproliferative processes samples, with the partial exception of AITL cases. Integrated mutational and immunohistochemical analysis shows that mutational changes cannot fully explain the activation of key survival pathways and the resulting phenotypes. The combined integration of mutational/expression changes forms a useful tool with which new compounds may be assayed
    corecore