282 research outputs found

    Suppression of ferromagnetism in URhGe doped with Ru

    Full text link
    In the correlated metal URhGe ferromagnetic order (T_C = 9.5 K) and superconductivity (T_s= 0.25 K) coexist at ambient pressure. Here we report on alloying URhGe by Ru, which enables one to tune the Curie temperature to 0 K. URuGe has a paramagnetic ground state and is isostructural to URhGe. We have prepared a series of polycrystalline URh_{1-x}Ru_{x}Ge samples over a wide range of x values. Magnetization and electrical resistivity data (T > 2 K) show, after an initial increase, a linear suppression of T_C with increasing x. The critical Ru concentration for the suppression of ferromagnetic order is x_cr ~ 0.38.Comment: pdf file (2 pages, 1 figure); submitted to the Proceedings of the Int. Conf. SCES'0

    Reservoir sedimentation in the Demirköprü Dam, Turkey

    Get PDF
    River morphodynamics and sediment transportSedimentation in reservoir

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    Pressure Evolution of the Ferromagnetic and Field Re-entrant Superconductivity in URhGe

    Full text link
    Fine pressure (PP) and magnetic field (HH) tuning on the ferromagnetic superconductor URhGe are reported in order to clarify the interplay between the mass enhancement, low field superconductivity (SC) and field reentrant superconductivity (RSC) by electrical resistivity measurements. With increasing PP, the transition temperature and the upper critical field of the low field SC decrease slightly, while the RSC dome drastically shifts to higher fields and shrinks. The spin reorientation field HRH_{\rm R} also increases. At a pressure P1.8P\sim 1.8 GPa, the RSC has collapsed while the low field SC persists and may disappear only above 4 GPa. Via careful (P,H)(P, H) studies of the inelastic T2T^2 resistivity term, it is demonstrated that this drastic change is directly related with the PP dependence of the effective mass which determines the critical field of the low field SC and RSC on the basis of triplet SC without Pauli limiting field.Comment: 5 pages, 6 figures, to appear in Journal of the Physical Society of Japa

    Evaluation of peripapillary choroidal and retinal nerve fiber layer thickness in eyes with tilted optic disc

    Full text link
    Purpose: This study was performed to evaluate the retinal nerve fiber layer (RNFL) and peripapillary choroidal thickness in eyes with tilted optic disc in order to identify characteristic RNFL and peripapillary choroid patterns verified by optical coherence tomography (OCT). Methods: Twenty-nine eyes of 29 patients with tilted optic discs were studied with spectral-domain (SD)-OCT and compared with age and sex-matched control subjects in a prospective design. The imaging of RNFL was performed using circular scans of a diameter of 3.4 mm around the optic disc using OCT. For measurements of peripapillary choroidal thickness, the standar d protocol for RNFL assessment was performed. Results: SD-OCT indicated significantly lower superotemporal (p<0.001), superonasal (p=0.001), and global (p=0.005) RNFL thicknesses in the tilted disc group than those of the control group. Peripapillary choroid was significantly thicker at the site of the elevated rim of eyes with tilted disc (p<0.001). Conclusion: This study demonstrated a clinical characterization of the main tilted disc morphologies that may be helpful in differentiating a tilted disc from other altered disc morphologies. Further studies are recommended to study the comparison between glaucoma and tilted disc groups

    Dilatometry study of the ferromagnetic order in single-crystalline URhGe

    Full text link
    Thermal expansion measurements have been carried out on single-crystalline URhGe in the temperature range from 2 to 200 K. At the ferromagnetic transition (Curie temperature T_C = 9.7 K), the coefficients of linear thermal expansion along the three principal orthorhombic axes all exhibit pronounced positive peaks. This implies that the uniaxial pressure dependencies of the Curie temperature, determined by the Ehrenfest relation, are all positive. Consequently, the calculated hydrostatic pressure dependence dT_C/dp is positive and amounts to 0.12 K/kbar. In addition, the effective Gruneisen parameter was determined. The low-temperature electronic Gruneisen parameter \Gamma_{sf} = 14 indicates an enhanced volume dependence of the ferromagnetic spin fluctuations at low temperatures. Moreover, the volume dependencies of the energy scales for ferromagnetic order and ferromagnetic spin fluctuations were found to be identical.Comment: 5 page

    Non-Centrosymmetric Heavy-Fermion Superconductors

    Full text link
    In this chapter we discuss the physical properties of a particular family of non-centrosymmetric superconductors belonging to the class heavy-fermion compounds. This group includes the ferromagnet UIr and the antiferromagnets CeRhSi3, CeIrSi3, CeCoGe3, CeIrGe3 and CePt3Si, of which all but CePt3Si become superconducting only under pressure. Each of these superconductors has intriguing and interesting properties. We first analyze CePt3Si, then review CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in their magnetic and electrical properties, and finally discuss UIr. For each material we discuss the crystal structure, magnetic order, occurrence of superconductivity, phase diagram, characteristic parameters, superconducting properties and pairing states. We present an overview of the similarities and differences between all these six compounds at the end.Comment: To appear in "Non-Centrosymmetric Superconductors: Introduction and Overview", Lecture Notes in Physics 847, edited by E. Bauer and M. Sigrist (Springer-Verlag, Berlin Heidelberg, 2012) Chap. 2, pp. 35-7

    Active dielectric antenna on chip for spatial light modulation

    Get PDF
    Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally waveguide based, many optical applications are free-space based, such as imaging, display, holographics, metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that allows the large-scale integration capability of silicon photonics to serve the free-space applications. We show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation speed is discussed.Air Force Office of Scientific Research (AFOSR grant FA9550-12-1-0261
    corecore