28 research outputs found
High aspect ratio template and method for producing same for central and peripheral nerve repair
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility
System and method for suppressing sublimation using opacified aerogel
The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression
Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink‐resistant conduit
Nerve repair in several mm‐long nerve gaps often requires an interventional technology. Microchannel scaffolds have proven effective for bridging nerve gaps and guiding axons in the peripheral nervous system (PNS). Nonetheless, fabricating microchannel scaffolds at this length scale remains a challenge and/or is time consuming and cumbersome. In this work, a simple computer‐aided microdrilling technique was used to fabricate 10 mm‐long agarose scaffolds consisting of 300 µm‐microchannels and 85 µm‐thick walls in less than an hour. The agarose scaffolds alone, however, did not exhibit adequate stiffness and integrity to withstand the mechanical stresses during implantation and suturing. To provide mechanical support and enable suturing, poly caprolactone (PCL) conduits were fabricated and agarose scaffolds were placed inside. A modified salt‐leaching technique was developed to introduce interconnected porosity in PCL conduits to allow for tuning of the mechanical properties such as elastic modulus and strain to failure. It was shown that the PCL conduits were effective in stabilizing the agarose scaffolds in 10 mm‐long sciatic nerve gaps of rats for at least 8 weeks. Robust axon ingress and Schwann cell penetration were observed within the microchannel scaffolds without using growth factors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3392–3399, 2017.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139110/1/jbma36186_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139110/2/jbma36186.pd
Mg/O<sub>2</sub> Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte
Mg/O<sub>2</sub> cells employing
a MgCl<sub>2</sub>/AlCl<sub>3</sub>/DME (MACC/DME) electrolyte are
cycled and compared to cells with
modified Grignard electrolytes, showing that performance of magnesium/oxygen
batteries depends strongly on electrolyte composition. Discharge capacity
is far greater for MACC/DME-based cells, while rechargeability in
these systems is severely limited. The Mg/O<sub>2</sub>-MACC/DME discharge
product comprises a mixture of Mg(ClO<sub>4</sub>)<sub>2</sub> and
MgCl<sub>2</sub>, with the latter likely formed from slow decomposition
of the former. The presence of Cl in these compounds suggests that
the electrolyte participates in the cell reaction or reacts readily
with the initial electrochemical products. A rate study suggests that
O<sub>2</sub> diffusion in the electrolyte limits discharge capacities
at higher currents. Formation of an insulating product film on the
positive electrodes of Mg/O<sub>2</sub>-MACC/DME cells following deep
discharge increases cell impedance substantially and likely explains
the poor rechargeability. An additional impedance rise consistent
with film formation on the Mg negative electrode suggests the presence
of detrimental O<sub>2</sub> crossover. Minimizing O<sub>2</sub> crossover
and bypassing charge transfer through the discharge product would
improve battery performance
High aspect ratio template and method for producing same
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers
Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy
Background: Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Methods: Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts.Results: RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. Conclusion: These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma. © 2010 Sadikovic et al; licensee BioMed Central Ltd
Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords.
The goal of this work was to design nerve guidance scaffolds with a unique architecture to maximize the open volume available for nerve growth. Polycaprolactone (PCL) was selected as the scaffold material based on its biocompatibility and month-long degradation. Yet, dense PCL does not exhibit suitable properties such as porosity, stiffness, strength, and cell adhesion to function as an effective nerve guidance scaffold. To address these shortcomings, PCL was processed using a modified salt-leaching technique to create uniquely controlled interconnected porosity. By controlling porosity, we demonstrated that the elastic modulus could be controlled between 2.09 and 182.1 MPa. In addition, introducing porosity and/or coating with fibronectin enhanced the PCL cell attachment properties. To produce PCL scaffolds with maximized open volume, porous PCL microtubes were fabricated and translated into scaffolds with 60 volume percent open volume. The scaffolds were tested in transected rat spinal cords. Linear axon growth within both the microtubes as well as the interstitial space between the tubes was observed, demonstrating that the entire open volume of the scaffold was available for nerve growth. Overall, a novel scaffold architecture and fabrication technique are presented. The scaffolds exhibit significantly higher volume than state-of-the-art scaffolds for promising spinal cord nerve repair
<i>In Vivo</i> Microcomputed Tomography of Nanocrystal-Doped Tissue Engineered Scaffolds
Tissue engineered scaffolds (TES)
hold promise for improving the
outcome of cell-based therapeutic strategies for a variety of biomedical
scenarios, including musculoskeletal injuries, soft tissue repair,
and spinal cord injury. Key to TES research and development, and clinical
use, is the ability to longitudinally monitor TES location, orientation,
integrity, and microstructure following implantation. Here, we describe
a strategy for using microcomputed tomography (microCT) to visualize
TES following implantation into mice. TES were doped with highly radiopaque
gadolinium oxide nanocrystals and were implanted into the hind limbs
of mice. Mice underwent serial microCT over 23 weeks. TES were clearly
visible over the entire time course. Alginate scaffolds underwent
a 20% volume reduction over the first 6 weeks, stabilizing over the
next 17 weeks. Agarose scaffold volumes were unchanged. TES attenuation
was also unchanged over the entire time course, indicating a lack
of nanocrystal dissolution or leakage. Histology at the implant site
showed the presence of very mild inflammation, typical for a mild
foreign body reaction. Blood work indicated marked elevation in liver
enzymes, and hematology measured significant reduction in white blood
cell counts. While extrapolation of the X-ray induced effects on hematopoiesis
in these mice to humans is not straightforward, clearly this is an
area for careful monitoring. Taken together, these data lend strong
support that doping TES with radiopaque nanocrystals and performing
microCT imaging, represents a possible strategy for enabling serial <i>in vivo</i> monitoring of TES
2
The oxide known as LLZO, with nominal
composition Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>, is a promising solid
electrolyte for Li-based batteries due to its high Li-ion conductivity
and chemical stability with respect to lithium. Solid electrolytes
may also enable the use of metallic Li anodes by serving as a physical
barrier that suppresses dendrite initiation and propagation during
cycling. Prior linear elasticity models of the Li electrode/solid
electrolyte interface suggest that the stability of this interface
is highly dependent on the elastic properties of the solid separator.
For example, dendritic suppression is predicted to be enhanced as
the electrolyte’s shear modulus increases. In the present study
a combination of first-principles calculations, acoustic impulse excitation
measurements, and nanoindentation experiments are used to determine
the elastic constants and moduli for high-conductivity LLZO compositions
based on Al and Ta doping. The calculated and measured isotropic shear
moduli are in good agreement and fall within the range of 56–61
GPa. These values are an order of magnitude larger than that for Li
metal and far exceed the minimum value (∼8.5 GPa) believed
to be necessary to suppress dendrite initiation. These data suggest
that LLZO exhibits sufficient stiffness to warrant additional development
as a solid electrolyte for Li batteries