15 research outputs found

    Modal analysis of the vertical moving table of 4-DOF parallel machine tool by FEM and experimental test

    Get PDF
    The vibration of the machine tool has important effect on machining quality of parts. So, in this paper, the dynamic behavior and modal parameters of the vertical moving table of the 4-DOF parallel machine tool are studied using the FEM and experimental methods. The prepared model of the vertical moving table in Solidworks is exported to ANSYS environment. Then, its natural frequencies and mode shapes are extracted using the modal analysis. Then having the FEM results, the exact modal data of the vertical moving table is obtained by the experimental tests. The exciting conditions of the machine tool table are obtained through modeling of machining operations. Finally, the resonance situations of the table are found using the modal data of the table and the cutting parameters of the machine tool. The results of this research can help the machine tool operator to avoid the vibration condition through correct selection of the cutting parameters

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Analysis of the Dynamic Forces of 3D Printer with 4 Degrees of Freedom

    No full text
    Abstract: The use of parallel mechanisms in the structure of 3D printers is developing. Parallel mechanisms have excellent capabilities in terms of accuracy, stiffness and high load-bearing capacity. This article studies a 3D printer with four degrees of freedom that has three degrees of linear freedom and one degree of rotational freedom. In this paper, the Newton-Euler analytical method is used to analyse the inverse dynamics and identify the driving forces required by the 3D nozzle motion. By coding the inverse dynamic equations in the MATLAB software environment, the driving forces diagrams are extracted based on the printer's nozzle motion. To validate the inverse dynamics relationships, simulations with the MATLAB software's Simmechanic model have been performed. By changing the speed of movement of the printer nozzle also change the velocity and acceleration of drives occur, the forces required for the drive also change. The effect of changes in print speed of a specific geometry on the driving forces is also studied

    A Study on the Beech Wood Machining Parameters Optimization Using Response Surface Methodology

    No full text
    The surface quality of wooden products is of great importance to production industries. The best surface quality requires a thorough understanding of the cutting parameters’ effects on the wooden material. In this paper, response surface methodology, which is one of the conventional statistical methods in experiment design, has been used to design experiments and investigate the effect of different machining parameters as feed rate, spindle speed, step over, and depth of cut on surface quality of the beech wood. The mathematical model of the examined parameters and the surface roughness have also been obtained by the method. Finally, the optimal machining parameters have been obtained to achieve the best quality of the machined surface, which reduced the surface roughness up to 4.2 (µm). Each of the machining parameters has a considerable effect on surface quality, although it is noted that the feed rate has the greatest effect

    Damage Detection of Gantry Crane with a Moving Mass Using Artificial Neural Network

    No full text
    Gantry cranes play a pivotal role in various industrial applications, and their reliable operation is paramount. While routine inspections are standard practice, certain defects, particularly in less accessible components, remain challenging to detect early. In this study, first a finite element model is presented, and the damage is introduced using random changes in the stiffness of different parts of the structure. Contrary to the assumption of inherent reliability, undetected defects in crucial structural elements can lead to catastrophic failures. Then, the vibration equations of healthy and damaged models are analyzed to find the displacement, velocity, and acceleration of the different crane parts. The learning vector quantization neural network is used to train and detect the defects. The output is the location of the damage and the damage severity. Noisy data are then used to evaluate the network performance robustness. This research also addresses the limitations of traditional inspection methods, providing early detection and classification of defects in gantry cranes. The study’s relevance lies in the need for a comprehensive and efficient damage detection method, especially for components not easily accessible during routine inspections

    A study on vibration of Setar: stringed Persian musical instrument

    Get PDF
    Knowing how a musical instrument vibrates can benefit the tonal characteristics shaping of the instrument. In this research, an approach for investigating the mode shapes and natural frequencies of Setar body is addressed. First, mechanical properties of wood used in the production of Setar are analyzed experimentally. Then a numerical modal test is performed to find the mode shapes and natural frequencies of Setar structure. To validate the results obtained by the numerical method, experimental modal testing is also done for the structure, and it is found that the results of both the methods are in good consistency. As the vibration pattern of plates is of utmost importance in the production of musical instruments, vibration patterns of a Setar plate are experimentally extracted and the results are compared with finite element analysis

    Machine Learning-Based Modelling and Meta-Heuristic-Based Optimization of Specific Tool Wear and Surface Roughness in the Milling Process

    No full text
    The purpose of this research is to investigate different milling parameters for optimization to achieve the maximum rate of material removal with the minimum tool wear and surface roughness. In this study, a tool wear factor is specified to investigate tool wear parameters and the amount of material removed during machining, simultaneously. The second output parameter is surface roughness. The DOE technique is used to design the experiments and applied to the milling machine. The practical data is used to develop different mathematical models. In addition, a single-objective genetic algorithm (GA) is applied to numerate the optimal hyperparameters of the proposed adaptive network-based fuzzy inference system (ANFIS) to achieve the best possible efficiency. Afterwards, the multi-objective GA is employed to extract the optimum cutting parameters to reach the specified tool wear and the least surface roughness. The proposed method is developed under MATLAB using the practically extracted dataset and neural network. The optimization results revealed that optimum values for feed rate, cutting speed, and depth of cut vary from 252.6 to 256.9 (m/min), 0.1005 to 0.1431 (mm/rev tooth), and from 1.2735 to 1.3108 (mm), respectively
    corecore