2,924 research outputs found

    Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI

    Get PDF
    4D flow MRI is a non-invasive imaging method that can measure blood flow velocities over time. However, the velocity fields detected by this technique have limitations due to low resolution and measurement noise. Coordinate-based neural networks have been researched to improve accuracy, with SIRENs being suitable for super-resolution tasks. Our study investigates SIRENs for time-varying 3-directional velocity fields measured in the aorta by 4D flow MRI, achieving denoising and super-resolution. We trained our method on voxel coordinates and benchmarked our approach using synthetic measurements and a real 4D flow MRI scan. Our optimized SIREN architecture outperformed state-of-the-art techniques, producing denoised and super-resolved velocity fields from clinical data. Our approach is quick to execute and straightforward to implement for novel cases, achieving 4D super-resolution

    Development, optimization and characterization of Eudraguard®-based microparticles for colon delivery

    Get PDF
    Development of pH-dependent systems for colon delivery of natural active ingredients is an attractive area of research in the field of nutraceutical products. This study was focused on Eudraguard® resins, that are methacrylate copolymers approved as “food grade” by European Commission and useful for the production of food supplements. In particular, Eudraguard® Biotic (EUG-B), characterized by a pH-dependent solubility and Eudraguard® Control (EUG-C), whose chemical properties support a prolonged release of the encapsulated compounds, were tested. To obtain EUG microparticles, different preparation techniques were tested, in order to optimize the preparation method and observe the effect upon drug encapsulation and specific colonic release. Unloaded microparticles were initially produced to evaluate the influence of polymer characteristics on the formulation process; subsequently microparticles loaded with quercetin (QUE) as a low solubility model drug were prepared. The characterization of microparticles in the solid-state (FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry) indicated that QUE was uniformly dispersed in a non-crystalline state in the polymeric network, without strong signs of chemical interactions. Finally, to assess the ability of EUG-C and EUG-B to control the drug release in the gastric environment, and to allow an increased release at a colonic level, suitable in vitro release tests were carried out by simulating the pH variations along the gastro-intestinal tract. Among the evaluated preparation methods, those in which an aqueous phase was not present, and in particular the emulsion-solvent evaporation method produced the best microparticle systems. The in vitro tests showed a limited drug release at a gastric level and a good specific colon release

    The DSC monitoring of oil melting to follow the oil curing

    Get PDF
    The drying of an oil paint is due to the polyunsaturations of the oil in the binder. Polyunsaturated oils dry trough an autoxidation process in which the double bonds of linolenic and linoleic acids naturally react with the oxygen present in the atmosphere. The gradual conversion of the liquid oil through a soft gel to a rubbery solid occurs as a result of a multistep free radical chain reaction. During the propagation step, hydroperoxides are formed. A method frequently used to follow the oil curing is the DSC monitoring of the peroxide decomposition peak during time. Since the oil polymerization affects its crystallinity, we propose here an altemative method to asses the oil curing. The melting peak of linseed oil samples is measured at different times of curing and compared with the pro\ufb01le of the peroxide decomposition peak over time. The comparison shows that the two phenomena are strongly correlated and that, when the maximum of the peroxide content is reached, the melting peak disappears. The study of the DSC melting peak is therefore proposed as a valid alternative tool to monitor the curing of an oil paint

    Multiple plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos

    Full text link
    Chrysotile asbestos is formed by densely packed bundles of multiwall hollow nanotubes. Each wall in the nanotubes is a cylindrically wrapped layer of Mg3Si2O5(OH)4Mg_3 Si_2 O_5 (OH)_4. We show by experiment and theory that the infrared spectrum of chrysotile presents multiple plasmon resonances in the Si-O stretching bands. These collective charge excitations are universal features of the nanotubes that are obtained by cylindrically wrapping an anisotropic material. The multiple plasmons can be observed if the width of the resonances is sufficiently small as in chrysotile.Comment: 4 pages, 5 figures. Revtex4 compuscript. Misprint in Eq.(6) correcte

    RENAL DENERVATION RAPIDLY RESTORES CIRCULATING PROGENITOR CELLS IN PATIENTS AFFECTED BY RESISTANT HYPERTENSION

    Get PDF
    Objective: To investigate whether blood pressure (BP) lowering after renal sympathetic denervation (RSD) affects CD34+ cell number in drug-resistant hypertension (R-HTN). Design and method: We enrolled 11 patients with R-HTN, already treated with at least 6 antihypertensive drugs, including a diuretic, at full dosages; patients with offi ce BP of > 160 mmHg (>150 mmHg for type 2 diabetes) were considered eligible for the procedure. Adherence to drug treatment was accurately checked by patient’s general practitioners. Mean age was 61 ± 7.9 years; M: F 8:5. We measured clinic (sphygmomanometer) and ambulatory (Tonoport V GEHealthcare) BP, and heart rate (HR; electrocardiogram), at baseline and 30 days after RSD procedure (Symplicity; Medtronic). 24 h BP recordings and home BP protocols were consulted in addition to offi ce BP measurements at the hospital before enrollment. Results: At T0: SBP: 179.1 ± 9.3mmHg; DBP: 101.2 ± 5.5 mmHg; HR 79.9 ± 9.4; CD34+ cells: 1.66 ± 0.51. At T1 SBP values were reduced on the average of 40.2 mmHg (138.9 ± 7.3; –22.5%, p < 0.001) DBP of 18 mmHg (83.2 ± 3.2; –17.7%, p < 0.001), and HR of 10.4 bpm (67.3 ± 6.0; -17.7%, p < 0.005), and CD34+cell number increased on an average of 0.34 cells /microL (2.0 ± 0.51; +21.2%, p < 0.001). Conclusions: RSD rapidly restores CD34+cell number in patients affected by true R-HTN; if these results will be confi rmed on a larger scale, they could provide new insights about CD34+ cells and pathophysiological aspects of arterial hypertension

    Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects

    Full text link
    We analyze the influence of spatial orientation on the optical response of hydrogenated silicon quantum wires. The results are relevant for the interpretation of the optical properties of light emitting porous silicon. We study (111)-oriented wires and compare the present results with those previously obtained within the same theoretical framework for (001)-oriented wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In analogy with the (001)-oriented wires and at variance with crystalline bulk silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0{\bf k}=0 whose value is largely enhanced with respect to that found in bulk silicon because of quantum confinement effects. The imaginary part of the dielectric function, for the external field polarized in the direction of the axis of the wires, shows features that, while being qualitatively similar to those observed for the (001) wires, are not present in the bulk. The main conclusion which emerges from the present study is that, if wires a few nanometers large are present in the porous material, they are optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte

    An assessment of the strength of knots and splices used as eye terminations in a sailing environment

    Get PDF
    Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified

    Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta

    Get PDF
    Background and Objective: Numerical simulations of blood flow are a valuable tool to investigate the pathophysiology of ascending thoratic aortic aneurysms (ATAA). To accurately reproduce in vivo hemodynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions (BCs). However, the limited availability of in vivo velocity measurements, still makes researchers resort to idealized BCs. The aim of this study was to generate and thoroughly characterize a large dataset of synthetic 4D aortic velocity profiles sampled on a 2D cross-section along the ascending aorta with features similar to clinical cohorts of patients with ATAA. Methods: Time-resolved 3D phase contrast magnetic resonance (4D flow MRI) scans of 30 subjects with ATAA were processed through in-house code to extract anatomically consistent cross-sectional planes along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of 437 synthetic cases with realistic properties was generated. Results: Comparison between clinical and synthetic datasets showed that the synthetic data presented similar characteristics as the clinical population in terms of key morphological parameters. The average velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized by more complex flow patterns which an idealized profile would not replicate. Statistically significant correlations were found between PCA principal modes of variation and flow descriptors. Conclusions: We built a data-driven generative model of 4D aortic inlet velocity profiles, suitable to be used in computational studies of blood flow. The proposed software system also allows to map any of the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set

    Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    Full text link
    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.Comment: 7 pages, 3 figure
    • …
    corecore