112 research outputs found

    Multiple Sulfur Isotope Records of the 3.22 Ga Moodies Group, Barberton Greenstone Belt

    Get PDF
    Co-auteur étrangerInternational audienceThe Moodies Group, the uppermost unit in the Barberton Greenstone Belt (BGB) in SouthAfrica, is a ~3.7-km-thick coarse clastic succession accumulated on terrestrial-to-shallow marinesettings at around 3.22 Ga. The multiple sulfur isotopic composition of pyrite of Moodies intervalswas newly obtained to examine the influence of these depositional settings on the sulfur isotope record.Conglomerate and sandstone rocks were collected from three synclines north of the Inyoka Fault of thecentral BGB, namely, the Eureka, Dycedale, and Saddleback synclines. The sulfur isotopic compositionof pyrite was analyzed by Secondary Ion Mass Spectrometry (SIMS) for 6 samples from the threesynclines and by Isotope Ratio Mass Spectrometry (IR-MS) for 17 samples from a stratigraphic sectionin the Saddleback Syncline. The present results show a signal of mass-independent fractionation ofsulfur isotopes (S-MIF), although t-tests statistically demonstrated that the Moodies S-MIF signals(mostly 0% < D33S < +0.5%) are significantly small compared to the signal of the older Paleoarchean(3.6–3.2 Ga) records. These peculiar signatures might be related to initial deposition of detrital pyriteof juvenile origin from the surrounding intrusive (tonalite–trondhjemite–granodiorite; TTG) andfelsic volcanic rocks, and/or to secondary addition of hydrothermal sulfur during late metasomatism.Moreover, fast accumulation (~0.1–1 mm/year) of the Moodies sediments might have led to a reducedaccumulation of sulfur derived from an atmospheric source during their deposition. As a result, thesulfur isotopic composition of the sediments may have become susceptible to the secondary additionof metasomatic sulfur on a mass balance point of view. The sulfur isotopic composition of Moodiespyrite is similar to the composition of sulfides from nearby gold mines. It suggests that, after theMoodies deposition, metasomatic pyrite formation commonly occurred north of the Inyoka Fault inthe central BGB at 3.1–3.0 Ga

    Changing Abundance of Magnetofossil Morphologies in Pelagic Red Clay Around Minamitorishima, Western North Pacific

    Get PDF
    金沢大学理工研究域地球社会基盤学系Recent investigations have discovered an unexpected abundance of magnetofossils in oxic pelagic red clays. These have potential to serve as paleoenvironmental tracers in otherwise nonfossiliferous sediments. Here, we report on variations in the abundance and morphology of magnetofossils in red clay from the western North Pacific. Magnetic measurements revealed that magnetofossils dominate the magnetic mineral assemblage of the sediments. An endmember analysis of isothermal remanent magnetization acquisition curves, supplemented by an analysis of S ratios, indicates that the magnetic assemblage can be unmixed into three endmembers, two corresponding to magnetofossils and one to terrigenous magnetic minerals. Direct counting of magnetofossil morphologies under a transmission electron microscope shows that the two magnetofossil endmembers differentiate equant magnetofossils and bullet-shaped magnetofossils, respectively. The stratigraphic variation of the endmember contributions revealed that the equant magnetofossils are dominant for the most part, while an interval at around 7 m in core depth shows higher abundance of the bullet-shaped magnetofossils. This may reflect enhanced organic carbon flux to the sediments. The organic carbon content is low throughout the sediments, and it does not show any change corresponding to the increase of bullet-shaped magnetofossils, pointing at extensive remineralization of the organic carbon. On the basis of lithostratigraphic correlation to nearby drilling sites, we tentatively estimate the age of the bullet-shaped magnetofossil increase as sometime between ∼75 and 25 Ma. These results suggest that environmental information can be obtained from magnetofossils in pelagic red clay. © 2017. American Geophysical Union. All Rights Reserved

    Identification of paleomagnetic remanence carriers in ca. 3.47 Ga dacite from the Duffer Formation, the Pilbara Craton

    Get PDF
    金沢大学理工研究域地球社会基盤学系The ca. 3.47 Ga Duffer Formation has been considered to carry one of the oldest paleomagnetic records. Yet, the lack of rock magnetic data limits the interpretation of the nature of the remanence. We conducted a rock magnetic and paleomagnetic investigation on columnar dacite of the Duffer Formation. The main magnetic minerals are phenocrysts of titanomagnetite and magnetite, and secondary hematite in groundmass. Detailed thermal demagnetization revealed more complex natural remanence than previously estimated, consisting of four components with typical unblocking temperature of 200–350, 200–500, 590, and 690 °C. Combined with alternating field demagnetization and rock magnetic data, they are attributed to titanomagnetite, coarse-grained magnetite, fine-grained magnetite, and hematite, respectively. The comparison of unblocking temperature and coercivity suggests that the previously proposed secondary component is carried by fine-grained magnetite as well as hematite, while the putative primary component is carried by coarse-grained magnetite and titanomagnetite. Microscopic observations showed that coarse-grained magnetite and titanomagnetite are primary crystals, although this does not necessarily indicate they preserve primary remanence. The remanence directions of all components revealed higher scatter than the previous studies, suggesting the need for caution in interpretation. The low unblocking temperature of titanomagnetite suggests that if their remanence is truly primary, the rocks must have kept below ~ 250 °C for ~3.47 billion years. © 2020 Elsevier B.V.Embargo Period 24 month

    Multiple Sulfur Isotope Geochemistry during the Permian-Triassic Transition

    No full text
    The end-Permian mass extinction was the largest biodiversity crisis in the Phanerozoic. Based on characteristic negative ∆33S signals of sedimentary pyrite, previous multiple sulfur isotope studies suggested shoaling of anoxic/sulfidic deep-waters onto a shelf, leading to the shallow-marine extinction. However, the validity of this shoaling model has been controversial. I compiled previously-reported multiple sulfur isotope records during the Permian-Triassic transition interval, and examined a stratigraphic relationship between the extinction horizon, redox oscillation in the depositional settings, and the multiple sulfur isotope record in each studied section. The compilation shows that the negative ∆33S signals do not correspond clearly to the extinction horizon or to the benthic anoxia/euxinia in the studied sections. The compilation also documents that the multiple sulfur isotope records during the Permian-Triassic transition are substantially variable, and that the negative ∆33S signals were observed in various types of sediments including shallow-marine carbonates, carbonates/siltstones of relatively deep-water facies, and abyssal deep-sea cherts. Those observations allow me to infer that the negative ∆33S signal is not a robust indicator of shoaling. Rather, this isotopic signal may reflect substantial sulfur isotope heterogeneity in the sediments controlled by local factors

    Contribution of cellular contractility to spatial and temporal variations in cellular stiffness

    Get PDF
    Scanning probe microscopy and immunofluorescence observations indicated that cellular stiffness was attributed to a contractile network structure consisting of stress fibers. We measured temporal variations in cellular stiffness when cellular contractility was regulated by dosing with lysophosphatidic acid or Y-27632. This experiment reveals a clear relation between cellular stiffness and contractility: Increases in contractility cause cells to stiffen. On the other hand, decreases in contractility reduce cellular stiffness. In both cases, not only the stiffness of the stress fibers but also that of the whole of the cell varies. Immunofluorescence observations of myosin II and vinculin indicated that the stiffness variations induced by the regulation of cellular contractility were mainly due to rearrangements of the contractile actin network on the dorsal surface. Taken together, our findings provide evidence that the actin cytoskeletal network and its contractility features provide and modulate the mechanical stability of adherent cells
    corecore