77 research outputs found

    Scanned Ion Beam Therapy of Moving Targets with Beam Tracking

    Get PDF

    Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    Get PDF
    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V¯95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems

    Revised Magnetic Structure and Tricritical Behavior of the CMR Compound NaCr2_2O4_4 Investigated with High Resolution Neutron Diffraction and μ+\mu^+SR

    Full text link
    The mixed valence Cr compound NaCr2_2O4_4, synthesized using a high-pressure technique, offers a unique playground for investigating unconventional physical properties in condensed matter. In the present study, muon spin rotation/relaxation (μ+\mu^+SR) and high-resolution neutron powder diffraction (NPD) measurements were carried out to clarify the true magnetic ground state of this interesting compound. Our detailed study brings new insight, allowing us to confirm the existence of a commensurate antiferromagnetic order (C-AFM) and to extract its ordered Cr moment μCrC=(4.30±0.01)μB\mu^{\rm C}_{\rm Cr}=(4.30\pm0.01)\mu_B. Such a value of the ordered moment is in fact compatible with the existence of high-spin Cr sites. Further, the value of the canting angle of the Cr spin axial vector is refined as θc=(8.8±0.5)\theta_{\rm c}=(8.8\pm0.5)^{\circ}. Employing high-quality samples in combination with time-of-flight NPD, a novel magnetic supercell was also revealed. Such supercell display an incommensurate (IC)-AFM propagation vector (0~0~12δ{\textstyle \frac{1}{2}-}\delta), having an ordered moment μCrIC=(2.20±0.03)μB\mu^{\rm IC}_{\rm Cr}=(2.20\pm0.03)\mu_B. It is suggested that the C-AFM and IC-AFM modulations are due to itinerant and localized contributions to the magnetic moment, respectively. Finally, the direct measurement of the magnetic order parameter provided a value of the critical exponent β=0.24514\beta = 0.245 \approx \frac{1}{4}, suggesting a non conventional critical behavior for the magnetic phase transition in NaCr2_2O4_4

    4DMRI-based investigation on the interplay effect for pencil beam scanning proton therapy of pancreatic cancer patients

    Get PDF
    Background: Time-resolved volumetric magnetic resonance imaging (4DMRI) offers the potential to analyze 3D motion with high soft-tissue contrast without additional imaging dose. We use 4DMRI to investigate the interplay effect for pencil beam scanning (PBS) proton therapy of pancreatic cancer and to quantify the dependency of residual interplay effects on the number of treatment fractions. Methods: Based on repeated 4DMRI datasets for nine pancreatic cancer patients, synthetic 4DCTs were generated by warping static 3DCTs with 4DMRI deformation vector fields. 4D dose calculations for scanned proton therapy were performed to quantify the interplay effect by CTV coverage (v95) and dose homogeneity (d5/d95) for incrementally up to 28 fractions. The interplay effect was further correlated to CTV motion characteristics. For quality assurance, volume and mass conservation were evaluated by Jacobian determinants and volume-density comparisons. Results: For the underlying patient cohort with CTV motion amplitudes < 15 mm, we observed significant correlations between CTV motion amplitudes and both the length of breathing cycles and the interplay effect. For individual fractions, tumor underdosage down to v95 = 70% was observed with pronounced dose heterogeneity (d5/d95 = 1.3). For full × 28 fractionated treatments, we observed a mitigation of the interplay effect with increasing fraction numbers. On average, after seven fractions, a CTV coverage with 95–107% of the prescribed dose was reached with sufficient dose homogeneity. For organs at risk, no significant differences were found between the static and accumulated dose plans for 28 fractions. Conclusion: Intrafractional organ motion exhibits a large interplay effect for PBS proton therapy of pancreatic cancer. The interplay effect correlates with CTV motion, but can be mitigated efficiently by fractionation, mainly due to different breathing starting phases in fractionated treatments. For hypofractionated treatments, a further restriction of motion may be required. Repeated 4DMRI measurements are a viable tool for pre- and post-treatment evaluations of the interplay effect

    Dosimetric precision of an ion beam tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams.</p> <p>Methods</p> <p>A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion.</p> <p>Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system.</p> <p>Results</p> <p>All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements.</p> <p>Conclusions</p> <p>The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.</p
    corecore