409 research outputs found

    Multicenter, randomized study to optimize bowel for colon capsule endoscopy

    Get PDF
    AIM To assess the cleansing efficacy and safety of a new Colon capsule endoscopy (CCE) bowel preparation regimen. METHODS This was a multicenter, prospective, randomized, controlled study comparing two CCE regimens. Subjects were asymptomatic and average risk for colorectal cancer. The second generation CCE system (PillCam® COLON 2; Medtronic, Yoqneam, Israel) was utilized. Preparation regimens differed in the 1st and 2nd boosts with the Study regimen using oral sulfate solution (89 mL) with diatrizoate meglumine and diatrizoate sodium solution (“diatrizoate solution”) (boost 1 = 60 mL, boost 2 = 30 mL) and the Control regimen oral sulfate solution (89 mL) alone. The primary outcome was overall and segmental colon cleansing. Secondary outcomes included safety, polyp detection, colonic transit, CCE completion and capsule excretion = 12 h. RESULTS Both regimens had similar cleansing efficacy for the whole colon (Adequate: Study = 75.9%, Control = 77.3%; P = 0.88) and individual segments. In the Study group, CCE completion was superior (Study = 90.9%, Control = 76.9%; P = 0.048) and colonic transit was more often \u3c 40 min (Study = 21.8%, Control = 4%; P = 0.0073). More Study regimen subjects experienced adverse events (Study = 19.4%, Control = 3.4%; P = 0.0061), and this difference did not appear related to diatrizoate solution. Adverse events were primarily gastrointestinal in nature and no serious adverse events related either to the bowel preparation regimen or the capsule were observed. There was a trend toward higher polyp detection with the Study regimen, but this did not achieve statistical significance for any size category. Mean transit time through the entire gastrointestinal tract, from ingestion to excretion, was shorter with the Study regimen while mean colonic transit times were similar for both study groups. CONCLUSION A CCE bowel preparation regimen using oral sulfate solution and diatrizoate solution as a boost agent is effective, safe, and achieved superior CCE completion. © The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved

    A label free disposable device for rapid isolation of rare tumor cells from blood by ultrasounds

    Get PDF
    The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs) from white blood cells (WBCs) in a microfluidic device, "THINUS-Chip" (Thin-Ultrasonic-Separator-Chip), actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW) applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW) or surface waves (SAW, SSAW and tSAW), it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84%±8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 µL/min (4.8 mL/h). The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    © The Author(s) 2020Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.We acknowledge and thank Dr. Nuria Malats and Jaime Villarreal from the Spanish National Cancer Research Center (CNIO) for RNA sequencing and analysis, funded by Fondo de Investigaciones Sanitarias (FIS) grant PI18/01347. We thank Patricia Sánchez-Tomero and Marina Ochando-Garmendia for technical assistance and support and Dr. Raúl Sánchez Lanzas for assistance with autophagy experiments. We want to particularly acknowledge the patients and the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002) integrated in the Spanish National Biobanks Network for its collaboration and, in particular, Adrián Povo Retana for macrophage isolation. We would also like to thank the Transmission Electron Microscopy Unit Laboratory, part of the UAM Interdepartmental Investigation Service (SIdI); Coral Pedrero for exceptional help with in vivo experiments; and the laboratories of Dr. Amparo Cano and Dr. José González Castaño for reagents and helpful discussions. S.V. was a recipient of an Ayuda de Movilidad del Personal Investigador del IRYCIS, a mobility grant from the Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, and a pre-doctoral fellowship from the Comunidad de Madrid, Ayudas Para La Contratación De Investigadores Predoctorales Y Posdoctorales (PEJD-2017-PRE/BMD-5062), Madrid, Spain. This study was supported by a Rámon y Cajal Merit Award (RYC-2012-12104) from the Ministerio de Economía y Competitividad, Spain (to B.S.); funding from la Beca Carmen Delgado/Miguel Pérez-Mateo from AESPANC-ACANPAN Spain (to B.S.); a Conquer Cancer Now Grant from the Concern Foundation (Los Angeles, CA, USA) (to B.S.); a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC) (to B.S.); FIS grants PI18/00757 (to B.S.), PI16/00789 (to M.A.F.-M.), PI18/00267 (to L.G.-B.; co-financed through Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”); a Miguel Servet award (CP16/00121) (to P.S.); a Max Eder Fellowship of the German Cancer Aid (111746) (to P.C.H.); and the German Research Foundation (DFG, CRC 1279 “Exploiting the human peptidome for Novel Antimicrobial and Anticancer Agents”; to P.C.H.)

    The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

    Get PDF
    Objective Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. Design Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. Results We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-beta 1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. Conclusions Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.CH: ERC Advanced Investigator Grant (Pa-CSC 233460), European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 256974 (EPC-TM-NET) and No 602783 (CAM-PaC), the Subdireccion General de Evaluacion y Fomento de la Investigacion, Fondo de Investigacion Sanitaria (PS09/02129 \& PI12/02643), and the Programa Nacional de Internacionalizacion de la I+D, Subprogramma: FCCI 2009 (PLE2009-0105; Ministerio de Economia y Competitividad, Spain). MC: La Caixa Predoctoral Fellowship.S

    Hepatitis C Virus Infection in Phenotypically Distinct Huh7 Cell Lines

    Get PDF
    In 2005, the first robust hepatitis C virus (HCV) infectious cell culture system was developed based on the HCV genotype 2a JFH-1 molecular clone and the human-derived hepatoma cell line Huh7. Although much effort has been made to dissect and expand the repertoire of JFH-1-derived clones, less attention has been given to the host cell despite the intriguing facts that thus far only Huh7 cells have been found to be highly permissive for HCV infection and furthermore only a limited number of Huh7 cell lines/stocks appear to be fully permissive. As such, we compiled a panel of Huh7 lines from disparate sources and evaluated their permissiveness for HCV infection. We found that although Huh7 lines from different laboratories do vary in morphology and cell growth, the majority (8 out of 9) were highly permissive for infection, as demonstrated by robust HCV RNA and de novo infectious virion production following infection. While HCV RNA levels achieved in the 8 permissive cell lines were relatively equivalent, three Huh7 lines demonstrated higher infectious virion production suggesting these cell lines more efficiently support post-replication event(s) in the viral life cycle. Consistent with previous studies, the single Huh7 line found to be relatively resistant to infection demonstrated a block in HCV entry. These studies not only suggest that the majority of Huh7 cell lines in different laboratories are in fact highly permissive for HCV infection, but also identify phenotypically distinct Huh7 lines, which may facilitate studies investigating the cellular determinants of HCV infection

    An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment

    Get PDF
    Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.R.C.-M. was supported for predoctoral contracts (PEJD 2016-BMD-2145 and 2018-BMD-9201) from the Community of Madrid and grant RTC2019-07227-1. M.E.M. and V.M.G. are researchers from FIBio-HRC supported by Consejeria de Sanidad (CAM). This work was supported by grants RTC2019-07227-1 and PID2019-105417RB-I00, funded by MCIN/AEI/10.13039/501100011033 (Ministry of Economy and Competitiveness, Spain)

    ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity

    Get PDF
    Pancreatic cancer stem cells (PaCSCs) drive pancreatic cancer tumorigenesis, chemoresistance and metastasis. While eliminating this subpopulation of cells would theoretically result in tumor eradication, PaCSCs are extremely plastic and can successfully adapt to targeted therapies. In this study, we demonstrate that PaCSCs increase expression of interferon-stimulated gene 15 (ISG15) and protein ISGylation, which are essential for maintaining their metabolic plasticity. CRISPR-mediated ISG15 genomic editing reduces overall ISGylation, impairing PaCSCs self-renewal and their in vivo tumorigenic capacity. At the molecular level, ISG15 loss results in decreased mitochondrial ISGylation concomitant with increased accumulation of dysfunctional mitochondria, reduced oxidative phosphorylation (OXPHOS) and impaired mitophagy. Importantly, disruption in mitochondrial metabolism affects PaCSC metabolic plasticity, making them susceptible to prolonged inhibition with metformin in vivo. Thus, ISGylation is critical for optimal and efficient OXPHOS by ensuring the recycling of dysfunctional mitochondria, and when absent, a dysregulation in mitophagy occurs that negatively impacts PaCSC stemness

    Association between canine leishmaniosis and Ehrlichia canis co-infection: a prospective case-control study

    Get PDF
    Abstract Background In the Mediterranean basin, Leishmania infantum is a major cause of disease in dogs, which are frequently co-infected with other vector-borne pathogens (VBP). However, the associations between dogs with clinical leishmaniosis (ClinL) and VBP co-infections have not been studied. We assessed the risk of VBP infections in dogs with ClinL and healthy controls. Methods We conducted a prospective case-control study of dogs with ClinL (positive qPCR and ELISA antibody for L. infantum on peripheral blood) and clinically healthy, ideally breed-, sex- and age-matched, control dogs (negative qPCR and ELISA antibody for L. infantum on peripheral blood) from Paphos, Cyprus. We obtained demographic data and all dogs underwent PCR on EDTA-blood extracted DNA for haemoplasma species, Ehrlichia/Anaplasma spp., Babesia spp., and Hepatozoon spp., with DNA sequencing to identify infecting species. We used logistic regression analysis and structural equation modelling (SEM) to evaluate the risk of VBP infections between ClinL cases and controls. Results From the 50 enrolled dogs with ClinL, DNA was detected in 24 (48%) for Hepatozoon spp., 14 (28%) for Mycoplasma haemocanis, 6 (12%) for Ehrlichia canis and 2 (4%) for Anaplasma platys. In the 92 enrolled control dogs, DNA was detected in 41 (45%) for Hepatozoon spp., 18 (20%) for M. haemocanis, 1 (1%) for E. canis and 3 (3%) for A. platys. No Babesia spp. or “Candidatus Mycoplasma haematoparvum” DNA was detected in any dog. No statistical differences were found between the ClinL and controls regarding age, sex, breed, lifestyle and use of ectoparasitic prevention. A significant association between ClinL and E. canis infection (OR = 12.4, 95% CI: 1.5–106.0, P = 0.022) was found compared to controls by multivariate logistic regression. This association was confirmed using SEM, which further identified that younger dogs were more likely to be infected with each of Hepatozoon spp. and M. haemocanis, and dogs with Hepatozoon spp. were more likely to be co-infected with M. haemocanis. Conclusions Dogs with ClinL are at a higher risk of co-infection with E. canis than clinically healthy dogs. We recommend that dogs diagnosed with ClinL should be tested for E. canis co-infection using PCR
    corecore