242 research outputs found

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    Exploring impulsive solar magnetic energy release and particle acceleration with focused hard X-ray imaging spectroscopy

    Get PDF
    How impulsive magnetic energy release leads to solar eruptions and how those eruptions are energized and evolve are vital unsolved problems in Heliophysics. The standard model for solar eruptions summarizes our current understanding of these events. Magnetic energy in the corona is released through drastic restructuring of the magnetic field via reconnection. Electrons and ions are then accelerated by poorly understood processes. Theories include contracting loops, merging magnetic islands, stochastic acceleration, and turbulence at shocks, among others. Although this basic model is well established, the fundamental physics is poorly understood. HXR observations using grazing-incidence focusing optics can now probe all of the key regions of the standard model. These include two above-the-looptop (ALT) sources which bookend the reconnection region and are likely the sites of particle acceleration and direct heating. The science achievable by a direct HXR imaging instrument can be summarized by the following science questions and objectives which are some of the most outstanding issues in solar physics (1) How are particles accelerated at the Sun? (1a) Where are electrons accelerated and on what time scales? (1b) What fraction of electrons is accelerated out of the ambient medium? (2) How does magnetic energy release on the Sun lead to flares and eruptions? A Focusing Optics X-ray Solar Imager (FOXSI) instrument, which can be built now using proven technology and at modest cost, would enable revolutionary advancements in our understanding of impulsive magnetic energy release and particle acceleration, a process which is known to occur at the Sun but also throughout the Universe

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    The free energy of NOAA active region AR 11029

    Full text link
    The NOAA active region AR 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares. The flares appear to show a departure from the well known power-law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power-law distribution (Wheatland in Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of active region AR 11029 using data taken on 24 October by the SOLIS Vector-SpectroMagnetograph (SOLIS/VSM), and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems because the magnetogram data are inconsistent with a force-free model, and we employ a recently developed `self-consistency' procedure which addresses this and accommodates uncertainties in the boundary data (Wheatland and Regnier in Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution and find that the free energy was 4x10^29 erg on 24 October, and 7x10^31 erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked is sufficient to power M-class or X-class flares, and hence the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.Comment: Accepted for publication in Solar Physic

    Insetos em presépios e as "formigas vestidas" de Jules Martin (1832-1906): uma curiosa manufatura paulistana do final do século XIX

    Get PDF
    Encontrados no Brasil desde os primórdios da colonização portuguesa, os presépios logo tiveram de adaptar-se à realidade local, circunstância muito propícia ao aparecimento de concepções heterodoxas e ao emprego de elementos exóticos da fauna e flora de cada região. Como registros envolvendo insetos são muito pouco comuns, chama a atenção que fêmeas de saúva, Atta sp. (Hymenoptera, Formicidae), tenham sido aproveitadas na composição de presépios no estado de São Paulo. Tendo subsistido pelo menos até a década 1960, os "presépios de formigas" existentes em cidades como Embu das Artes poderiam estar relacionados às "formigas vestidas" criadas por Jules Martin, curiosa manufatura paulistana do último quartel do século XIX.Present in Brazil since the beginning of Portuguese colonization, crèche nativity scenes were soon adapted to local reality, a propitious circumstance for the appearance of heterodox conceptions and the use of exotic elements of the fauna and flora peculiar to each region. As records about insects are very uncommon, it is noteworthy that females of leaf-cutting ants, Atta sp. (Hymenoptera, Formicidae), were used to compose crèche nativity scenes in São Paulo State. Having subsisted at least up to the decade of 1960, the "ant crèches" of cities such as Embu das Artes could be related to the then famous "dressed ants" created by Jules Martin, a curious manufacture of the city of São Paulo in the last quarter of the 19th century

    Pere Alberch's developmental morphospaces and the evolution of cognition

    Get PDF
    In this article we argue for an extension of Pere Alberch's notion of developmental morphospace into the realm of cognition and introduce the notion of cognitive phenotype as a new tool for the evolutionary and developmental study of cognitive abilities

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore