180 research outputs found

    NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice

    Get PDF
    BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone

    Grouping practices in the primary school: what influences change?

    Get PDF
    During the 1990s, there was considerable emphasis on promoting particular kinds of pupil grouping as a means of raising educational standards. This survey of 2000 primary schools explored the extent to which schools had changed their grouping practices in responses to this, the nature of the changes made and the reasons for those changes. Forty eight percent of responding schools reported that they had made no change. Twenty two percent reported changes because of the literacy hour, 2% because of the numeracy hour, 7% because of a combination of these and 21% for other reasons. Important influences on decisions about the types of grouping adopted were related to pupil learning and differentiation, teaching, the implementation of the national literacy strategy, practical issues and school self-evaluation

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of β€˜large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the β€˜smaller’ arteries and veins of radii β‰₯ 50 ΞΌ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity

    Get PDF
    Aims/hypothesis. Obese people exhibit reduced circulating peptide YY (PYY) levels, but it is unclear whether this is a consequence or cause of obesity. We therefore investigated the effect of Pyy ablation on energy homeostasis. Methods. Body composition, i.p. glucose tolerance, food intake and hypothalamic neuropeptide expression were determined in Pyy knock-out and wild-type mice on a normal or high-fat diet. Results. Pyy knock-out significantly increased bodyweight and increased fat mass by 50% in aged females on a normal diet. Male chow-fed Pyy βˆ’/βˆ’ mice were resistant to obesity but became significantly fatter and glucose-intolerant compared with wild-types when fed a high-fat diet. Pyy knock-out animals exhibited significantly elevated fasting or glucose-stimulated serum insulin concentrations vs wild-types, with no increase in basal or fasting-induced food intake. Pyy knock-out decreased or had no effect on neuropeptide Y expression in the arcuate nucleus of the hypothalamus, and significantly increased proopiomelanocortin expression in this region. Male but not female knock-outs exhibited significantly increased growth hormone-releasing hormone expression in the ventromedial hypothalamus and significantly elevated serum IGF-I and testosterone levels. This sex difference in activation of the hypothalamo–pituitary somatotrophic axis by Pyy ablation may contribute to the resistance of chow-fed male knock-outs to late-onset obesity. Conclusions/interpretation. PYY signalling is important in the regulation of energy balance and glucose homeostasis, possibly via regulation of insulin release. Therefore reduced PYY levels may predispose to the development of obesity, particularly with ageing or under conditions of high-fat feeding

    Rewiring carotenoid biosynthesis in plants using a viral vector

    Get PDF
    [EN] Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers.We thank Veronica Aragones and M. Rosa Rodriguez-Goberna for excellent technical assistance. This research was supported by Spanish Ministerio de Economia y Competitividad (MINECO) grants BIO2014-54269-R to J.-A.D., and BIO2014-59092-P and BIO2015-71703-REDT to M. R.-C. Financial support from the Generalitat Valenciana (PROMETEOII/2014/021), the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (Ibercarot 112RT0445), and the Generalitat de Catalunya (2014SGR-1434) is also acknowledged. E.M. is the recipient of a pre-doctoral fellowship (AP2012-3751) from the Spanish Ministerio de Educacion, Cultura y Deporte. B.L. is supported by a postdoctoral fellowship (FPDI-2013-018882) from MINECO.Majer, E.; Llorente, B.; RodrΓ­guez-ConcepciΓ³n, M.; Daros Arnau, JA. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports. 7. https://doi.org/10.1038/srep41645S7O’Connor, S. E. Engineering of secondary metabolism. Annu. Rev. Genet. 49, 71–94 (2015).Sainsbury, F. & Lomonossoff, G. P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 19, 1–7 (2014).Gleba, Y. Y., TusΓ©, D. & Giritch, A. Plant viral vectors for delivery by Agrobacterium. Curr. Top. Microbiol. Immunol. 375, 155–192 (2014).Chen, Q., He, J., Phoolcharoen, W. & Mason, H. S. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum. Vaccin. 7, 331–338 (2011).Pogue, G. P., Lindbo, J. A., Garger, S. J. & Fitzmaurice, W. P. Making an ally from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 40, 45–74 (2002).Peyret, H. & Lomonossoff, G. P. When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol. J. 13, 1121–1135 (2015).Bedoya, L. C., MartΓ­nez, F., OrzΓ‘ez, D. & DarΓ²s, J. A. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol. 158, 1130–1138 (2012).Majer, E., DarΓ²s, J. A. & Zwart, M. P. Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 5, 2153–2168 (2013).Bedoya, L., MartΓ­nez, F., Rubio, L. & DarΓ²s, J. A. Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J. Biotechnol. 150, 268–275 (2010).Kelloniemi, J., MΓ€kinen, K. & Valkonen, J. P. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res. 135, 282–291 (2008).Carrington, J. C., Haldeman, R., Dolja, V. V. & Restrepo-Hartwig, M. A. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo . J. Virol. 67, 6995–7000 (1993).Li, X. H. & Carrington, J. C. Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc. Natl. Acad. Sci. USA 92, 457–461 (1995).Fraser, P. D. & Bramley, P. M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265 (2004).MelΓ©ndez-MartΓ­nez, A. J., Mapelli-Brahm, P., BenΓ­tez-GonzΓ‘lez, A. & Stinco, C. M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 572, 188–200 (2015).RodrΓ­guez-ConcepciΓ³n, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002).Giuliano, G. Plant carotenoids: genomics meets multi-gene engineering. Curr. Opin. Plant Biol. 19, 111–117 (2014).Cazzonelli, C. I. & Pogson, B. J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15, 266–274 (2010).Ruiz-Sola, M. A. & RodrΓ­guez-ConcepciΓ³n, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10, e0158 (2012).Nisar, N., Li, L., Lu, S., Khin, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 68–82 (2015).Misawa, N. et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli . J. Bacteriol. 172, 6704–6712 (1990).Hasunuma, T. et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55, 857–868 (2008).Lu, Y., Rijzaani, H., Karcher, D., Ruf, S. & Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 110, E623–632 (2013).Mann, V., Harker, M., Pecker, I. & Hirschberg, J. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18, 888–892 (2000).Wurbs, D., Ruf, S. & Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 49, 276–288 (2007).Cordero, M. T. et al. Dicer-like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana . Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-11-16-0239-R (2016).Ye, X. et al. Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).Ravanello, M. P., Ke, D., Alvarez, J., Huang, B. & Shewmaker, C. K. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab. Eng. 5, 255–263 (2003).Fujisawa, M. et al. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60, 1319–1332 (2009).Ohara, K., Ujihara, T., Endo, T., Sato, F. & Yazaki, K. Limonene production in tobacco with Perilla limonene synthase cDNA. J. Exp. Bot. 54, 2635–2642 (2003).Gutensohn, M. et al. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J. 75, 351–363 (2013).Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H. & Misawa, N. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58, 1112–1114 (1994).Bahieldin, A. et al. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72, 18–28 (2014).Xie, W., Lv, X., Ye, L., Zhou, P. & Yu, H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 30, 69–78 (2015).Li, Y., Cui, H., Cui, X. & Wang, A. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 17, 19–24 (2016).Tilsner, J. & Oparka, K. J. Tracking the green invaders: advances in imaging virus infection in plants. Biochem. J. 430, 21–37 (2010).Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683 (1995).Kumagai, M. H., Keller, Y., Bouvier, F., Clary, D. & Camara, B. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana . Plant J. 14, 305–315 (1998).Zhai, S., Xia, X. & He, Z. Carotenoids in staple cereals: metabolism, regulation, and genetic manipulation. Front. Plant Sci. 7, 1197 (2016).Zhang, H. et al. A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods 9, 28 (2013).Nielsen, A. Z. et al. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth. Biol. 2, 308–315 (2013).Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A. & Lomonossoff, G. P. Using a virus-derived system to manipulate plant natural product biosynthetic pathways. Methods Enzymol. 517, 185–202 (2012).Geisler, K. et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl. Acad. Sci. USA 110, E3360–3367 (2013).Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A. & Brodelius, P. E. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana . Plant Cell Rep. 31, 1309–1319 (2012).Mozes-Koch, R. et al. Expression of an entire bacterial operon in plants. Plant Physiol. 158, 1883–1892 (2012).Thole, V., Worland, B., Snape, J. W. & Vain, P. The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 1211–1219 (2007).Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009).Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).Cunningham, F. X. Jr., Chamovitz, D., Misawa, N., Gantt, E. & Hirschberg, J. Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of b-carotene. FEBS Lett. 328, 130–138 (1993).Shivprasad, S. et al. Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255, 312–323 (1999).SchΓΌrer, H., Lang, K., Schuster, J. & MΓΆrl, M. A universal method to produce in vitro transcripts with homogeneous 3β€² ends. Nucleic Acids Res. 30, e56 (2002).Lu, R. et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699 (2003).Dickmeis, C., Fischer, R. & Commandeur, U. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts. Biotechnol. J. 9, 1369–1379 (2014).Nakagawa, T. et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007).Bedoya, L. C. & DarΓ²s, J. A. Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Res. 149, 234–240 (2010).Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).Llorente, B. et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85, 107–119 (2016)

    Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice

    Get PDF
    Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5βˆ’/βˆ’ mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5βˆ’/βˆ’ animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake

    A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis

    Get PDF
    It is well known that the parallel order of microtubules in the plant cell cortex defines the direction of cell expansion, yet it remains unclear how microtubule orientation is controlled, especially on a cell-wide basis. Here we show through 4D imaging and computational modelling that plant cell polyhedral geometry provides spatial input that determines array orientation and heterogeneity. Microtubules depolymerize when encountering sharp cell edges head-on, whereas those oriented parallel to those sharp edges remain. Edge-induced microtubule depolymerization, however, is overcome by the microtubule-associated protein CLASP, which accumulates at specific cell edges, enables microtubule growth around sharp edges and promotes formation of microtubule bundles that span adjacent cell faces. By computationally modelling dynamic 'microtubules on a cube' with edges differentially permissive to microtubule passage, we show that the CLASP-edge complex is a 'tuneable' microtubule organizer, with the inherent flexibility to generate the numerous cortical array patterns observed in nature
    • …
    corecore