9,361 research outputs found
Future supernovae data and quintessence models
The possibility to unambiguously determine the equation-of-state of the
cosmic dark energy with existing and future supernovae data is investigated. We
consider four evolution laws for this equation-of-state corresponding to four
quintessential models, i.e. i) a cosmological constant, ii) a general
barotropic fluid, iii) a perfect fluid with a linear equation-of-state and iv)
a more physical model based on a pseudo-Nambu-Goldstone boson field. We
explicitly show the degeneracies present not only within each model but also
between the different models : they are caused by the multi-integral relation
between the equation-of-state of dark energy and the luminosity distance.
Present supernova observations are analysed using a standard method
and the minimal values obtained for each model are compared. We
confirm the difficulty to discriminate between these models using present SNeIa
data only. By means of simulations, we then show that future SNAP observations
will not remove all the degeneracies. For example, wrong estimations of
with a good value of could be found if the right
cosmological model is not used to fit the data. We finally give some
probabilities to obtain unambiguous results, free from degeneracies. In
particular, the probability to confuse a cosmological constant with a true
barotropic fluid with an equation-of-state different from -1 is shown to be 95%
at a level.Comment: 12 pages. This improved version has been accepted for publication in
M.N.R.A.
Coexistence of localized and itinerant electrons in BaFe2X3 (X = S and Se) revealed by photoemission spectroscopy
We report a photoemission study at room temperature on BaFe2X3 (X = S and Se)
and CsFe2Se3 in which two-leg ladders are formed by the Fe sites. The Fe 2p
core-level peaks of BaFe2X3 are broad and exhibit two components, indicating
that itinerant and localized Fe 3d sites coexist similar to KxFe2-ySe2. The Fe
2p core-level peak of CsFe2Se3 is rather sharp and is accompanied by a
charge-transfer satellite. The insulating ground state of CsFe2Se3 can be
viewed as a Fe2+ Mott insulator in spite of the formal valence of +2.5. The
itinerant versus localized behaviors can be associated with the stability of
chalcogen p holes in the two-leg ladder structure.Comment: 5 pages, 5 figures, Accepted in publication for Physical Review
Secrecy fairness aware NOMA for untrusted users
Spectrally-efficient secure non-orthogonal multiple access (NOMA) has recently attained a substantial research interest for fifth generation development. This work explores crucial security issue in NOMA which is stemmed from utilizing the decoding concept of successive interference cancellation. Considering untrusted users, we design a novel secure NOMA transmission protocol to maximize secrecy fairness among users. A new decoding order for two users' NOMA is proposed that provides positive secrecy rate to both users. Observing the objective of maximizing secrecy fairness between users under given power budget constraint, the problem is formulated as minimizing the maximum secrecy outage probability (SOP) between users. In particular, closed-form expressions of SOP for both users are derived to analyze secrecy performance. SOP minimization problems are solved using pseudoconvexity concept, and optimized power allocation (PA) for each user is obtained. Asymptotic expressions of SOPs, and optimal PAs minimizing these approximations are obtained to get deeper insights. Further, globally-optimized power control solution from secrecy fairness perspective is obtained at a low computational complexity and, asymptotic approximation is obtained to gain analytical insights. Numerical results validate the correctness of analysis, and present insights on optimal solutions. Finally, we present insights on global-optimal PA by which fairness is ensured and gains of about 55.12%, 69.30%, and 19.11%, respectively are achieved, compared to fixed PA and individual users' optimal PAs
Untrusted NOMA with Imperfect SIC: Outage Performance Analysis and Optimization
Non-orthogonal multiple access (NOMA) has come to the fore as a spectral-efficient technique for fifth-generation and beyond communication networks. We consider the downlink of a NOMA system with untrusted users. In order to consider a more realistic scenario, imperfect successive interference cancellation is assumed at the receivers during the decoding process. Since pair outage probability (POP) ensures a minimum rate guarantee to each user, it behaves as a measure of the quality of service for the pair of users. With the objective of designing a reliable communication protocol, we derive the closed-form expression of POP. Further, we find the optimal power allocation that minimizes the POP. Lastly, numerical results have been presented which validate the exactness of the analysis, and reveal the effect of various key parameters on achieved pair outage performance. In addition, we benchmark optimal power allocation against equal and fixed power allocations with respect to POP. The results indicate that optimal power allocation results in improved communication reliability
Calculations of electronic band structure and optical properties of HgTe under pressure
The electronic band structure and optical properties of HgTe have been reported using the full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory. In this approach, generalized gradient approximation (GGA) and Engel-Vosko generalized gradient approximation (EV-GGA) have been used for the exchange correlation potential in the calculations. The electronic band structures have been calculated to discuss the electronic properties and optical properties of the compound. Moreover, optical properties including dielectric functions, absorption, optical conductivity, refractive index, reflectivity and energy loss spectrum have been obtained and analyzed in details within the energy range up to 14 eV. The obtained results have been compared with the previous calculations and available experimental data. Overall good agreement is found
Decoding Orders and Power Allocation for Untrusted NOMA: A Secrecy Perspective
The amalgamation of non-orthogonal multiple access (NOMA) and physical layer security is a significant research interest for providing spectrally-efficient secure fifth-generation networks. Observing the secrecy issue among multiplexed NOMA users, which is stemmed from successive interference cancellation based decoding at receivers, we focus on safeguarding untrusted NOMA. Considering the problem of each user's privacy from each other, the appropriate secure decoding order and power allocation (PA) for users are investigated. Specifically, a decoding order strategy is proposed which is efficient in providing positive secrecy at all NOMA users. An algorithm is also provided through which all the feasible secure decoding orders in accordance with the proposed decoding order strategy can be obtained. Further, in order to maximize the sum secrecy rate of the system, the joint solution of decoding order and PA is obtained numerically. Also, a sub-optimal decoding order solution is proposed. Lastly, numerical results present useful insights on the impact of key system parameters and demonstrate that average secrecy rate performance gain of about 27 dB is obtained by the jointly optimized solution over different relevant schemes
- …