6 research outputs found

    Wind-blown dust and its impacts on particulate matter pollution in Northern China : current and future scenarios

    Get PDF
    Northern China experienced two intense dust storms in March 2021, leading to reduced visibility and excessive particulate pollution. Understanding the cause of such extreme phenomena is important for further prevention. This study successfully reproduced the extreme dust storms using the Community Multiscale Air Quality model with refined bulk density of different soil types and improved spatial resolution. The wind-blown PM2.5 and PM10 are estimated to be around 15 and 120 mu g m(-3) in dust source areas (equal 9.6% and 31.0% in average of China), resulting in 1.1 and 2.0 times increases in PM2.5 and PM10 concentrations in populated regions of the Middle Yellow River Basin and the Beijing-Tianjin-Hebei area. The critical threshold friction velocity is the key parameter to judge whether wind-blown dust occurs. Dust flux is sensitive to the bulk soil density (increased by 4.2% and 12.6% for PM2.5 and PM10 after refined soil bulk density) and resolution (increased by 13.5% and 3.5% for PM2.5 and PM10 from 27 km to 9 km). Such results demonstrated the strong correlation between wind speed, frequency, and intensity of dust phenomena from 2013 to 2021. The wind speed can be further enhanced in dust source areas even in the context of a decline in the national average, leading to more frequent and persistent dust storms in March 2050. Only relying on coordinated emission reductions to mitigate climate change, wind-blown dust in northern China still poses considerable potential risks to air quality. Urgent actions should also be taken to improve land-use and land-cover to reduce the area of dust sources.Non peer reviewe

    Therapeutic influence of simvastatin on MCF-7 and MDA-MB-231 breast cancer cells via mitochondrial depletion and improvement in chemosensitivity of cytotoxic drugs

    No full text
    Background: Breast cancer is the most commonly diagnosed cancer worldwide with 2.26 million cases in 2020. Cancer heterogeneity is the major challenge before existing therapeutic modalities due to metabolic variability of the cells as Warburg and anti-Warburg both type of metabolic phenotypes has been reported as a major contributing factors for cancer progression, invasion, metastasis and relapse. Also, this metabolic variability is associated with chemo and radio-resistance and poor therapeutic outcomes. Therefore, in present study we put an attempt to understand how simvastatin exert its effects on two metabolically different cell types and second how this drug can affect mitochondrial biomass, mt-DNA and glycolysis in both the cell types. Methods: We have observed effects of simvastatin on MCF-7 (dependent more on OXPHOS) and MDA-MB-231 (TNBC; more glycolytic with defected mitochondria) cells alone and after simvastatin pre-treatment followed by cytotoxic drugs including cisplatin, doxorubicin, gemcitabine, vincristine. We have conducted MTT assay for viability, cell death detection assay, apoptotic morphology study, scratch assay, transwell migration assay, lactate estimation in media (glycolysis parameter), mt-DNA to n-DNA ratio, mitotracker red (for mitochondrial membrane potential) and mitotracker green staining (for mitochondrial biomass) and qPCR to study expression of mitochondrial transcription factors and apoptotic genes including PGC-1α, NRF-1, NRF-2, TFAM, Bcl-2 and Bax. Results: We observed that 20 μM simvastatin (SIM) was most efficient dose for MCF-7, whereas 12.5 μM for MDA-MB-231 cells. Simvastatin itself caused a significant decrease in viability, increased cell death, and diminished wound closure in scratch assay as well as inhibited transwell migration. Also, the cells pre-treated with simvastatin for 72 h followed by treatment with cytotoxic drugs for 48 h increased chemo-sensitivity of cisplatin (CIS), doxorubicin (DOX), gemcitabine (GEM) and vincristine (VIN). SIM alone and in pre-treatment followed by cytotoxic drug treatment studies, there was a significant decrease in mitochondrial biomass and mitochondrial membrane potential (MMP), but also decreased glycolysis as evidenced by decrease in lactate levels in culture media. For inhibition of migratory potential, it was in the following order: CIS ˃ VIN ˃DOX˃ GEM, which was in the same order to diminish mitochondrial functionality (mt-DNA/n-DNA ratio, mitotracker green staining and a significant decrease in the expression of transcriptional factors of mitochondrial biogenesis). Contrastingly a decrease in the same order was observed in lactate concentration independent to the mitochondrial loss, but probably via inherent ability of the drugs to reduce lactate and glycolysis. However, for cell death, apoptotic phenotype, diminished expression of Bcl-2 along with increase in Bax and loss of viability, the efficiency of simvastatin alone and in pre-treatment studies was in the following order: VIN ˃ DOX˃GEM˃CIS, which was supported by loss of fluorescence of mitotracker red, suggested decrease in MMP; marker of cell death. Conclusion: We conclude that by using different doses simvastatin can target different metabolic phenotypes of breast cancer cells and can also increase the chemo-sensitivity of cytotoxic drugs, so that they can work efficiently at lower doses which will ultimately diminish the cost and toxicity issues

    Impact of Climate-Driven Land-Use Change on O-3 and PM Pollution by Driving BVOC Emissions in China in 2050

    No full text
    This study predicted three future land-use type scenarios in 2050 (including the Shared Socioeconomic Pathway SSP126, SSP585, and carbon scenario) based on the Land-Use Harmonization (LUH2) project and the future evolution of land-use types considering China's carbon neutrality background. The contribution of land-use changes to terrestrial natural source biogenic volatile organic compounds (BVOCs), as well as O-3 and PM concentrations, were determined. Under the SSP126 pathway, meteorological changes would increase BVOC emissions in China by 1.0 TgC in 2050, compared with 2015, while land-use changes would increase them by 1.5-7.1 TgC. The impact of land-use changes on O-3 and PM concentrations would be less than 3.6% in 2050 and greater in summer. Regional differences must be considered when calculating future environmental background concentrations of pollutants. Due to more afforestation measures under the SSP126 scenario, the impact of land-use change on pollutants was more obvious under the SSP126 pathway than under the SSP585 pathway. Under the carbon scenario, the increase in PM concentration caused by land-use changes would pose a risk to air quality compliance; thus, it is necessary to consider reducing or offsetting this potential risk through anthropogenic emission control measures.ISSN:2073-443

    Year-long simulation of gaseous and particulate air pollutants in India

    No full text
    Severe pollution events occur frequently in India but few studies have investigated the characteristics, sources, and control strategies for the whole country. A year-long simulation was carried out in India to provide detailed information of spatial and temporal distribution of gas species and particulate matter (PM). The concentrations of O_3, NO_2, SO_2, CO, as well as PM_(2.5) and its components in 2015 were predicted using Weather Research Forecasting (WRF) and the Community Multiscale Air Quality (CMAQ) models. Model performance was validated against available observations from ground based national ambient air quality monitoring stations in major cities. Model performance of O_3 does not always meet the criteria suggested by the US Environmental Protection Agency (EPA) but that of PM_(2.5) meets suggested criteria by previous studies. The performance of model was better on days with high O_3 and PM_(2.5) levels. Concentrations of PM_(2.5), NO_2, CO and SO_2 were highest in the Indo-Gangetic region, including northern and eastern India. PM_(2.5) concentrations were higher during winter and lower during monsoon season. Winter nitrate concentrations were 160–230% higher than yearly average. In contrast, the fraction of sulfate in total PM_(2.5) was maximum in monsoon and least in winter, due to decrease in temperature and solar radiation intensity in winter. Except in southern India, where sulfate was the major component of PM_(2.5), primary organic aerosol (POA) fraction in PM_(2.5) was highest in all regions of the country. Fractions of secondary components were higher on bad days than on good days in these cities, indicating the importance of control of precursors for secondary pollutants in India
    corecore