56 research outputs found

    Early transcriptome profile of goat peripheral blood mononuclear cells (PBMCs) infected with peste des petits ruminant's vaccine virus (Sungri/96) revealed induction of antiviral response in an interferon independent manner

    Get PDF
    Sungri/96 vaccine strain is considered the most potent vaccine providing long-term immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory highlighted induction of robust antiviral response in an interferon independent manner at 48 h and 120 h post infection (p.i.). However, immune response at the earliest time point 6 h p.i. (time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus has not been investigated. This study was taken up to understand the global gene expression profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6 h post infection (p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. Interestingly, type I interferons (IFNα/β) were not differentially expressed at this time point as well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus infection was found to be highly upregulated. IL27, an important antiviral host immune factor was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed significant enrichment of immune system processes with 233 genes indicating initiation of immune defense response in host cells. Protein interaction network showed important innate immune molecules in the immune network with high connectivity. The study highlights important immune and antiviral genes at the earliest time point

    Dysregulated miRNAome and Proteome of PPRV Infected Goat PBMCs Reveal a Coordinated Immune Response

    Get PDF
    In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs

    Comparative and temporal transcriptome analysis of peste des petits ruminants virus infected goat peripheral blood mononuclear cells

    Get PDF
    Peste des petits ruminanats virus (PPRV), a morbillivirus causes an acute, highly contagious disease – peste des petits ruminants (PPR), affecting goats and sheep. Sungri/96 vaccine strain is widely used for mass vaccination programs in India against PPR and is considered the most potent vaccine providing long-term immunity. However, occurrence of outbreaks due to emerging PPR viruses may be a challenge. In this study, the temporal dynamics of immune response in goat peripheral blood mononuclear cells (PBMCs) infected with Sungri/96 vaccine virus was investigated by transcriptome analysis. Infected goat PBMCs at 48 h and 120 h post infection revealed 2540 and 2000 differentially expressed genes (DEGs), respectively, on comparison with respective controls. Comparison of the infected samples revealed 1416 DEGs to be altered across time points. Functional analysis of DEGs reflected enrichment of TLR signaling pathways, innate immune response, inflammatory response, positive regulation of signal transduction and cytokine production. The upregulation of innate immune genes during early phase (between 2-5 days) viz. interferon regulatory factors (IRFs), tripartite motifs (TRIM) and several interferon stimulated genes (ISGs) in infected PBMCs and interactome analysis indicated induction of broad-spectrum anti-viral state. Several Transcription factors – IRF3, FOXO3 and SP1 that govern immune regulatory pathways were identified to co-regulate the DEGs. The results from this study, highlighted the involvement of both innate and adaptive immune systems with the enrichment of complement cascade observed at 120 h p.i., suggestive of a link between innate and adaptive immune response. Based on the transcriptome analysis and qRT-PCR validation, an in vitro mechanism for the induction of ISGs by IRFs in an interferon independent manner to trigger a robust immune response was predicted in PPRV infection

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Fish Physiology and Biochemistry

    No full text
    Not AvailableThe present study aims to delineate the effect of exogenous enzyme supplementation of fermented or non-fermented de-oiled rice bran (DORB) on haematology, histology and expression of IGF I gene expression of Labeo rohita. Four test diets, namely, T1 (DORB), T2 (fermented DORB), T3 (DORB+exogenous enzyme) and T4 (fermented DORB+exogenous enzyme) were formulated and fed to the L. rohita for a period of 60 days. The test diets T3 and T4 were supplemented with 0.1 g kg-1 xylanase (16,000 U kg?1) and 0.1 g kg-1 phytase (500 U kg?1) enzymes. A total of 120 juveniles of L. rohita (average weight 5.01 ? 0.02 g) were stocked in 12 rectangular tanks with 10 fish per tank in triplicates. At the end of the experiment, haematology, histology and IGF I gene expression of the different groups were analysed. The haemoglobin (Hb) content, RBC count and WBC count of L. rohita varied significantly (p 0.05) effect on MCH, MCHC and lymphocyte content of the cultured fish. The group which were fed T3 diet had significantly (p < 0.05) higher IGF-I gene expression as compared to other groups. The histological examination of liver revealed no pathological alteration of this organ. Similarly, there were no pathological changes observed in intestinal tissue in any dietary treatment group. Based on the findings of the present study, it is concluded that exogenous enzyme supplementation of DORB-based diets improves the physiological status and growth performances of Labeo rohita

    PPAR-&gamma; Partial Agonists in Disease-Fate Decision with Special Reference to Cancer

    No full text
    Peroxisome proliferator-activated receptor-&gamma; (PPAR-&gamma;) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-&gamma;. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-&gamma; and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-&gamma; agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed

    Tree species diversity, distribution and soil nutrient status along altitudinal gradients in Saptasajya hill range, Eastern Ghats, India

    No full text
    This study analysed the diversity of tree species, their distribution and soil nutrient status along altitudinal gradients of Saptasajya hill range, Eastern Ghats, India. Thirty quadrats of 10m×10m size for trees across the altitude ranges between 81m and 450m were laid. Field sampling were conducted at 3 different elevation sites of the hill range: Site 1- Low Elevation Forest (LEF), Site 2- Middle Elevation Forest (MEF) and Site 3- High Elevation Forest (HEF). A total of 368 individuals which belongs to 48 species among 42 genera and 27 families were recorded in 0.3 ha sampling areas. Maximum numbers of tree species occurred at LEF (35) followed by MEF (34) and HEF (14). The density of tree species varied from 433 ha-1 to 390 ha-1 with average basal area of 30.64 m2/ha. The Shannon diversity index (H′) varied among the three sites was 2.19 (LEF), 1.84 (MEF) and 1.29 (HEF). The soil parameters of three forest sites were analysed and correlated with tree species richness, diversity and density. Species richness and tree diversity index were positively correlated with pH (r=0.743 and r=0.829 respectively; p<0.05), whereas tree density was negatively correlated with pH (r= -0.597), phosphorous (r= -0.401), organic carbon (r= -0.543) and tree diversity index (r= -0.364). It could be helpful to understand the pattern of vegetation and its relation to soil nutrients in Eastern Ghats of India implicating conservation plan for tree species in tropical moist deciduous forests

    Dietary flavonoids as modulators of non-coding RNAs in hormone-associated cancer

    No full text
    Non-coding RNA (ncRNAs) is greatly known to be involved in many cellular processes such as growth and development including tumorigenesis. Alterations in expression of ncRNAs are observed in several cancers. Therefore, they are regarded as potential players in carcinogenesis. In a broader view, it has been documented that ncRNAs are also involved in hormone-associated cancers (HACs) by regulating their epigenetic processes. Hence, HACs emerge on the radar of scientific community and cancer research as they are widely influenced by hormone levels and latter promotes cancer growth. Although various risk factors point to HACs, findings are inconsistent and not uniform. Dietary flavonoids are amongst the natural compounds that are capable of repressing the proliferation and growth of numerous cancer cells. This could be rewarding and might open new avenues for cancer treatment. In addition, flavonoids seem to have anti-hormone like properties in HACs. However, there are no direct assessment of flavonoids and their effects in HACs. The studies are not stringent enough to evaluate the intake of these dietary flavonoids. Herein, the present review highlights the role of numerous dietary flavonoids as ncRNA modulators in HACs. Mechanisms of ncRNA regulation and the role of hormones associated with hormone-specific cancer has also been discussed

    Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet

    No full text
    A 60-day experiment was conducted to study the effect of dietary gelatinized (G) and non-gelatinized (NG) starch on the key metabolic enzymes of glycolysis (hexokinase, glucokinase, pyruvate kinase, and lactate dehydrogenase), gluconeogenesis (glucose-6 phosphatase and fructose-1,6 bisphosphatase), protein metabolism (aspartate amino transferase and alanine amino transferase), and TCA cycle (malate dehydrogenase) in Labeo rohita juveniles. In the analysis, 234 juveniles (2.53 +/- A 0.04 g) were randomly distributed into six treatment groups each with three replicates. Six semi-purified diets containing NG and G cornstarch, each at six levels of inclusion (0, 20, 40, 60, 80, and 100) were prepared viz., T1 (100% NG, 0% G starch), T2 (80% NG, 20% G starch), T3 (60% NG, 40% G starch), T4 (40% NG, 60% G starch), T5 (20% NG, 80% G starch), and T6 (0% NG, 100% G starch). Dietary G:NG starch ratio had a significant (P 0.05) influenced by the type of dietary starch. The alanine amino transferase activity in both liver and muscle showed an increasing trend with the decrease in the dietary G level. The liver and muscle malate dehydrogenase activities were lowest in the T6 group and highest in the T1 group. Results suggest that NG (100%) starch diet significantly induced more the enzyme activities of amino acid metabolism, gluconeogenesis, and TCA cycle, whereas partial or total replacement of raw starch by gelatinized starch increased the glycolytic enzyme activity
    corecore