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Abstract 52	

Sungri/96 vaccine strain is considered the most potent vaccine providing long-term 53	

immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory 54	

highlighted induction of robust antiviral response in an interferon independent manner at 48 55	

h and 120 h post infection (p.i.). However, immune response at the earliest time point 6 h p.i. 56	

(time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus 57	

has not been investigated. This study was taken up to understand the global gene expression 58	

profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6 h post infection 59	

(p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - 60	

upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, 61	

IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. 62	

Interestingly, type I interferons (IFNα/β) were not differentially expressed at this time point as 63	

well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus 64	

infection was found to be highly upregulated. IL27, an important antiviral host immune factor 65	

was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease 66	

activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed 67	

significant enrichment of immune system processes with 233 genes indicating initiation of 68	

immune defense response in host cells. Protein interaction network showed important innate 69	

immune molecules in the immune network with high connectivity. The study highlights 70	

important immune and antiviral genes at the earliest time point. 71	

Keywords: Microarray, PPRV, PBMCs, STRING protein-protein interactions, Ingenuity 72	

pathway analysis. 73	

Introduction 74	

 Peste-des-petits ruminant’s virus (PPRV), is an important viral pathogen of sheep and 75	

goats that causes devastating disease Peste-des-petits ruminants (PPR), which is spreading 76	
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extensively over the last two decades causing significant economic loses in developing 77	

countries (Albina et al., 2013; Banyard et al., 2010). PPRV is a single stranded (ss) RNA virus 78	

that belongs to the genus Morbillivirus and Family Paramyxoviridae. The PPRV genome 79	

encodes six structural proteins nucleoprotein (N), a viral RNA-dependent polymerase (L), an 80	

RNA-polymerase phosphoprotein co-factor (P), a matrix protein (M), a fusion protein (F) and 81	

a hemagglutinin protein (H) and two non-structural proteins C and V proteins. The C protein 82	

of morbilliviruses mediates efficient viral replication in peripheral blood cells in host by 83	

blocking the induction of type I interferons (Escoffier et al., 1999; Boxer et al., 2009). These 84	

non-structural proteins (C and V) in morbilliviruses and the paramyxoviruses, play an efficient 85	

role in virus replication, its virulence and help the virus in evading the host immune defense 86	

mechanisms by blocking type I IFN signaling pathway. Studies by many researchers have 87	

shown that the non-structural proteins of the paramyxoviruses inhibit the type I interferon 88	

(IFNα/β) response (Garcin et al., 1999, Shaffer et al., 2003 and Ramachandran et al., 2008). 89	

Recently, PPRV V protein was found to bind MDA-5 and its overexpression was shown to 90	

block IFN-β pathways (Bernardo et al., 2017). Previous transcriptome studies in our 91	

laboratory highlighted induction of robust antiviral response in an interferon independent 92	

manner at 48 h and 120 h post infection (p.i.) (Manjunath et al., 2017). However, immune 93	

response at the earliest time point 6 h p.i. (time taken to complete one PPRV life cycle), in 94	

PBMCs infected with Sungri/96 vaccine virus has not been investigated. 95	

       Interferons (IFNs) are the family of the cytokines, which inhibit viral growth inducing an 96	

antiviral state in host cells at the early stage of infection and play a critical role in modulating 97	

adaptive immune responses. Type I IFNs (IFN-α and IFN-β) commonly referred as “viral IFNs” 98	

are directly induced when the viral conserved molecular patterns called pathogen associated 99	

molecular patterns (PAMPs) are recognized by the pattern recognition receptors (PRRs) of 100	

the host cells. Type I interferon (IFN) gene induction in host cells against viral infections is a 101	
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consequence of activation of virus responsive elements, controlled by key regulators called 102	

interferon regulatory factors (IRFs mainly IRF-3 and 7). The induction of type I IFNs as 103	

secreted factors bind to the cell surface transmembrane receptors called interferon alpha 104	

receptor (IFNAR) on cells adjacent to infected cells and activates downstream JAK-STAT 105	

pathway. The activated STAT proteins translocates into the nucleus and binds to interferon 106	

stimulated responsive elements (ISREs) present at the upstream of the interferon stimulated 107	

genes (ISGs) activating many ISGs, which ultimately exerts the antiviral effect synergistically 108	

with other cytokines and chemokines (Pitha-Rowe and Pitha., 2007). Thus, interferon 109	

stimulated genes (ISGs) along with other cytokines and chemokines help in establishing an 110	

antiviral state in infected host cells. Interestingly, few RNA viruses including PPRV, have 111	

developed unique mechanisms to counterattack the host interferon (IFN) responses by 112	

subverting the host interferon signaling and thus, establish infection evading host innate and 113	

adaptive immune defenses (Bernardo et al., 2017; Nanda and Baron., 2006; Pauli et al., 2008; 114	

Nan et al., 2014). 115	

       Therefore, in the present study, the transcriptomic signatures in PPRV infected PBMCs 116	

at 6 h post infection (p.i) was analyzed to identify important innate immune / antiviral genes 117	

induced, and candidate genes driving interferon (IFN) evasion at early stages of PPRV 118	

infection. The results in the present study along with our previous observations (Manjunath et 119	

al., 2017; Manjunath et al., 2015) will add important protective innate immune signatures 120	

stimulated by Sungri/96 PPRV vaccine virus from early time point to the later stages of PPRV 121	

infection in an interferon independent manner. 122	

2. Materials and Methods123	

2.1. Animals, blood collection and screening animals for PPRV antibodies: All 124	

experimental procedures in the present study were approved by Institute Animal Ethics 125	

Committee (I.A.E.C No.F.1.53/2012-13-J.D.). Blood was collected from goat kids (5 months 126	
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old, n=5) screened negative for PPRV antibodies using competitive ELISA (c-ELISA) (Singh 127	

et al., 2004) kit and serum neutralization test (SNT) (Dhinakar Raj et al., 2000). Blood 128	

collected from animals negative for PPRV antibodies with percentage inhibition (PI) values 129	

less than 40 was used for isolating Peripheral blood mononuclear cells (PBMCs) and further 130	

studies. 131	

2.2. Isolation of PBMCs and PPRV Infection Confirmation Peripheral blood mononuclear 132	

cells (PBMCs) from PPRV negative goats were isolated from fresh, heparinized venous blood 133	

by density gradient centrifugation on Histopaque-2000 and was washed thrice with sterile 134	

phosphate buffered saline (PBS), the cells were finally resuspended in RPMI-1640 135	

supplemented with 10% fetal bovine serum and antibiotics (100 IU/ml penicillin, 100 μg/ml 136	

streptomycin). Viability of the cells was assessed using trypan blue exclusion test and the 137	

cells were found to be more than 95% viable. PBMCs were seeded at a density 1 X 106 viable 138	

cells/ml in two 6 well plates, one serving as control and the other plate was used for virus 139	

infection. Goat PBMCs isolated were infected with purified (Ultracentrifuged) Sungri/96 PPRV 140	

vaccine virus at 1.0 MOI (multiplicity of infection) and incubated at 370C in 5% CO2 incubator 141	

for 1 h of virus adsorption. After 1 h of adsorption, the virus inoculum was removed, 142	

centrifuged to collect the lymphocytes as they are in suspension, washed with fresh RPMI 143	

medium and added back to the wells. Fresh RPMI medium was added to wells and incubated 144	

upto 6 h post infection (p.i). The control (mock-infected) PBMCs on the other hand just 145	

received RPMI medium. Finally, the infected cells along with the control (mock-infected) 146	

PBMCs in duplicates were harvested at 6 h post-infection (p.i) and were processed for RNA 147	

isolation. Cells from three wells were combined per replicate sample. This time point was 148	

chosen to give enough time for the establishment of infection and for the completion of one 149	

viral life cycle (for PPRV 6-8 h). Experiments were performed in duplicates using RNA 150	

samples from two independently infected cell cultures for analysis. PPRV infection in PBMCs 151	
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was confirmed with N gene PCR and qRT-PCR. RNA isolated from control and the infected 152	

PBMCs was reverse transcribed to cDNA and N gene was amplified and quantified as 153	

previously (Manjunath et al., 2015). 154	

2.3. RNA preparation for microarray analysis: Total RNA was isolated from the PPRV 155	

infected and control PBMCs using Trizol reagent (Invitrogen). The quality and the integrity of 156	

the RNA samples isolated were determined using the Agilent RNA 6000 Nano Kit on the 157	

Agilent 2100 Bioanalyzer (Agilent Technologies) and the RNA was quantified on ND-1000 158	

Spectrophotometer. Labeling of the complementary RNA (cRNA) samples was performed as 159	

detailed in the agilent one-colour microarray based gene expression analysis protocol. Briefly, 160	

200ng of total RNA was used for amplification and labeling step using Agilent Quick Amp 161	

Labelling kit (Agilent Technologies) in presence of Cy3-CTP. Amplified cRNA samples were 162	

purified and the dye incorporation rates were measured before hybridization with ND-1000 163	

Spectrophotometer. 164	

2.4. Microarrays and Hybridization: The labeled samples were hybridized according to the 165	

one-color microarray based gene expression analysis (part number G4140-90040). In brief, 166	

1.65 μg of Cy3-labelled fragmented cRNA was hybridized overnight (at 650 C for 16 h) to 4 x 167	

44K Agilent Bos taurus microarrays. Since Capra hircus genome was not completely 168	

annotated, Bos taurus microarrays were used based on the fact that the average identity 169	

across exon sequences between Bos taurus and Capra hircus was 93.77% (Fontanesi et al., 170	

2010). After overnight hybridization, the arrays were washed with Triton X-102 added gene 171	

expression hybridization buffer I for 1 min at room temperature followed by wash with pre-172	

warmed gene expression hybridization buffer II for 1 min at 370 C. The hybridized microarrays 173	

were scanned using standard protocols and fluorescence signals were detected using 174	

Agilent’s Microarray scanner system (G2505C Scanner, Agilent Technologies, USA). Agilent 175	
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feature extraction software (FES) was used to process the scanned raw microarray image 176	

files to text files for the data analysis. 177	

2.5. Microarray data analysis and Identification of differentially expressed genes 178	

(DEGs): The sample files generated from microarray experiment were processed with agilent 179	

feature extraction software and then subjected to bioinformatics analysis using GeneSpring 180	

GX10 software (Agilent Technologies). The RMA algorithm conducts background correction, 181	

followed by quantile normalization and probe summarization. Overview of the experiment and 182	

the microarray analysis followed in the present study is highlighted in Figure 1. Differentially 183	

expressed genes (DEGs) statistically significant based on fold change ≥ 3 and P-value < 0.05 184	

were identified. A total of 1926 DEGs were identified of which 616 were upregulated and 1310 185	

genes were downregulated. 186	

2.6. Gene Ontology (GO) and Pathway analysis: The GO category based on biological 187	

process was retrieved for all the 1926 differentially expressed genes and also separately for 188	

all upregulated (616) and the downregulated genes (1310) using g:profiler (Reimand et al., 189	

2011). Further, analysis of enrichment of differentially expressed genes to canonical 190	

pathways was done using Cytoscape plugin ClueGO (Shannon et al., 2003), the enriched 191	

pathways were based on KEGG and REACTOME databases. 192	

2.7. Ingenuity Pathway analysis (IPA): The total differentially expressed genes were 193	

subjected to IPA analysis tool (IPA; QIAGEN, Redwood, CA). Also, the upregulated and the 194	

downregulated genes in isolation were analyzed by IPA. IPA analysis can be used to identify 195	

top significant canonical pathways (ranked by the z-score) and enriched networks in given 196	

set of input query genes. This tool in addition to identifying significant pathways can also 197	

predict downstream effects on the biological process, and activation/inhibition of the 198	

transcription factors from gene expression data set (Kramer et al., 2014). The differentially 199	

expressed genes (DEGs) identified from the microarray analysis were uploaded into IPA with 200	
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gene identifiers (ID) and corresponding fold changes. The same was followed separately for 201	

upregulated and the downregulated genes in the DEGs. Here, two parameters were used to 202	

calculate the significance between the genes from the input set and the canonical pathway: 203	

(1) Ratio which refers to number of genes in list to the total number of genes in the canonical 204	

pathway (2) P-value calculated by the Fisher’s exact test, determining the probability that 205	

there is an association between the input genes and the canonical pathway. Top 5 significant 206	

canonical pathways for the total DEGs and for upregulated and downregulated genes in 207	

isolation were identified and, the ratio and P-value were recorded.  208	

2.8. STRING analysis of protein-protein interactions (PPI) of DEGs:  The protein-protein 209	

interactions among upregulated and the downregulated genes (with fold change ≥ 5) in the 210	

study were predicted using STRING database (http://string-db.org/), which has known and 211	

predicted protein interactions. The STRING represents the functional association, and the 212	

basic interaction unit here gives the specific and productive relationship between the two 213	

proteins (Szklarczyk et al., 2015). The STRING new version 10.0 used to detect protein-214	

protein interactions (PPI) in this study covers more than 2031 organisms and for our study 215	

we used Bos taurus as closely related species to Capra hircus. The PPI analysis was carried 216	

out separately for upregulated and the downregulated genes. PPI for the upregulated genes 217	

consisted of 192 nodes and 171 edges. PPI analysis for the downregulated genes consisted 218	

of 392 nodes and 347 edges. Here, nodes represent the proteins and the edges represent 219	

the protein-protein associations. Nodes which were not connected were removed from the 220	

study. 221	

2.9. Validation of the microarray data with qRT-PCR: To confirm the results of our 222	

microarray analysis, among the identified differentially expressed genes (DEGs) some of the 223	

candidate DEGs of interest (Table 1) were validated using qRT-PCR. GAPDH, which is the 224	

most stable housekeeping genes for PPRV infected PBMCs observed previously (Manjunath 225	
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et al., 2015) was used as an endogenous control for the experiment. Total RNA was isolated 226	

from control and the infected PBMCs at 6 h p.i using the TRIzol reagent (Invitrogen, USA) 227	

according to the manufacturer’s instructions. The RNA quality was checked and quantified 228	

using nanodrop spectrophotometer (Thermo Scientific, USA). 100 ng of RNA was used to 229	

synthesize cDNA using Revert Aid First Strand cDNA synthesis kit. qRT-PCR was performed 230	

in Applied Biosystems 7500 fast machine using 2X SYBR green. A melt curve analysis was 231	

performed to know the specificity of the qPCR. For the test and endogenous control genes 232	

the percentage efficiency ranged between 90% and 100%. All the samples were assayed in 233	

triplicates. The relative expression of each sample was calculated using the 2−ΔΔCT method 234	

with uninfected control group as calibrator (Livak and Schmittgen, 2001). Student’s t-test was 235	

done in JMP9 (SAS Institute Inc, Cary, USA) and differences between groups were 236	

considered significant at P ≤ 0.05. 237	

3. Results238	

3.1. Infection confirmation and quantification of PPRV Infected cells: PPRV infection in 239	

PBMCs was confirmed by amplifying ‘N’ gene from the infected PBMCs at 6 h post infection 240	

(p.i.). The control cells were negative for N gene (Figure 2A). qRT-PCR quantified N gene 241	

expression at 6 h p.i, further confirmed PPRV infection in PBMCs (Figure 2B). 242	

3.2. Effects of early PPRV infection and Overview of differentially expressed genes 243	

(DEGS) at 6 h p.i 244	

 In response to PPRV infection at 6 h p.i, a total of 1926 genes were found to be differentially 245	

expressed in infected PBMCs based on fold change of (Fc) >±3 and P <0.05 (see 246	

Supplementary Table 1). Among these 1926 significant differentially expressed genes, 616 247	

and 1310 genes were found to be significantly upregulated and downregulated respectively 248	

at 6 h p.i. List of top 20 upregulated and downregulated genes are given in (Table 2) with their 249	

corresponding fold changes. Among the upregulated genes, SERTAD1 was found to be the 250	
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highly upregulated gene (Fold change 53.3). TREX1, the cytosolic exonuclease that plays a 251	

role in inhibiting induction of type I interferons was also highly upregulated (fold change 41.9). 252	

Many interferon related genes were found to be upregulated in our study namely, interferon 253	

induced protein with tetricopeptides (IFITs) viz. IFIT1 (fold change 17.3), IFIT2 (fold change 254	

3.4) and IFIT3 (8.5). Also, IFITM3 - Interferon inducible transmembrane proteins, an important 255	

antiviral immune factor against many pathogenic viruses was found to be upregulated (fold 256	

change 16.7). ISG20 (Interferon stimulated gene 20) which inhibits replication of many viruses 257	

was found to be highly upregulated (fold change 23.7) in PBMCs infected with PPRV at 6 h 258	

p.i. Among the interferon regulatory factors (IRFs), IRF1 (fold change 5.5) and IRF7 (fold259	

change 5.8) was found to be induced. IL-27, an antiviral cytokine was significantly upregulated 260	

after PPRV infection (fold change 19.3). The innate immune signaling cascade of events 261	

leading to the activation of the downstream effectors i.e interferon stimulated genes (ISGs) is 262	

initiated when pattern recognition receptors (PRRs) like TLRs are engaged with viral nucleic 263	

acids. In our study, TLR3, TLR7 and TLR8 were found to be upregulated after PPRV infection 264	

in PBMCs. Among the downregulated genes, IFNAR1 was found to be downregulated with a 265	

fold change 3.08. Among the caspases, caspase 8 (fold change 3.72) and caspase 4 (fold 266	

change 3.4) were significantly upregulated. 267	

3.3. Gene Annotation of Differentially expressed genes and their pathway analysis 268	

Significantly enriched biological processes among all the differentially expressed genes (i.e 269	

1926 DEGs), and among the upregulated and the downregulated genes in isolation were 270	

retrieved using g:profiler. Specific biology can be understood by analyzing the functional 271	

enrichment for upregulated and downregulated genes in isolation. Biological processes 272	

enriched among the 1926 DEGs are shown in Figure 3A, Supplementary table 2, Sheet1. The 273	

top significant biological process enriched among all the DEGs (1926) were immune system 274	

process (Genes: 233; P-value 2.89E-10), response to stress (Genes: 305; P-value 1.68E-05), 275	
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defense response (Genes: 135; P-value 2.24E-05), cell surface receptor signaling pathway 276	

(Genes: 226; P-value 2.49E-05), cytokine production (Genes: 74; P-value 0.000643). 277	

Biological process retrieved for 616 upregulated DEGs showed enrichment of immune system 278	

process, cytokine production, innate immune response and other immune defense processes 279	

(Figure 3B, Supplementary table 2 Sheet 2). Enriched biological processes of the 280	

downregulated genes showed enrichment of the normal cellular processes (Figure 3B, 281	

Supplementary table 2 Sheet 3). ClueGO analysis showed significant enrichment of antiviral 282	

mechanism by ISGs and interferon signaling among 1926 DEGs, and among the upregulated 283	

genes antiviral mechanism, interferon signaling, cytokine signaling, toll like receptor signaling 284	

pathway, etc., were found to be enriched (Figure 3C and 3D). Overall, the functional 285	

enrichment of DEGs at 6 h p.i. reflected that the infected PBMCs responded to the PPR virus 286	

infection by initiating the immune defense against the virus by alarming the immune sensors. 287	

3.4. Significant Pathway analysis of PPRV Infected PBMCs (6 h p.i.) 288	

 All the 1926 DEGs identified were uploaded to Ingenuity pathway analysis (IPA). The top 289	

canonical pathways enriched were Interferon (IFN) signaling (P=2.82E-08, ratio=0.417); role 290	

of BRAC1 in DNA damage response (P=1.65E-06, ratio=0.256); hepatic stellate cell 291	

activation (P=3.28E-06, ratio=0.182), role of JAK family kinases in IL-6 type cytokine signaling 292	

(P=9.37E-06, ratio=0.4) and glucocorticoid receptor signaling (P=2.36E-06, ratio= 0.15) 293	

(Figure 4A, Table 3). Further, the network analysis of these DEGs (1926) involved 25 294	

networks with top significant pathway being cell death and survival (score 40). This was 295	

followed by cellular assembly and organization, cellular function and maintenance with a 296	

score of 38. We then subjected upregulated (616) and downregulated DEGs (1310) to IPA. 297	

Statistically significant canonical pathways enriched in upregulated genes were interferon 298	

signaling (P=3.81E-12, ratio=0.361), T-helper cell differentiation (P=4.09E-08, ratio=0.183), 299	

communication between innate and adaptive immune cells (P=6.4E-07, ratio=0.146) (Figure 300	
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4B, Table 3). IFN-gamma and transcription factors (IRF7 and IRF1) were found to be the 301	

significant upstream regulators controlling significant number of upregulated genes. The 302	

important network associated with upregulated genes was antimicrobial response, 303	

inflammatory response and infectious diseases (score 27). IPA analysis of the downregulated 304	

genes did not show any relevant important canonical pathways related to the infection (Figure 305	

4C, Table 3). The network of the upregulated genes consisting of important innate immune 306	

molecules was generated from IPA and shown in figure 4D. 307	

3.5. Interaction Network Analysis (INA) of upregulated and downregulated genes 308	

Figure 5A and 5B shows predicted protein interaction networks of the upregulated and the 309	

downregulated genes encoding proteins. The network analysis of the upregulated genes 310	

showed average node degree 1.78 and clustering co-efficient to be 0.795. The network 311	

showed interaction between the early immune genes interferon regulatory factors - IRF1, 312	

IRF7; interferon stimulated gene - ISG20; and IFN-induced protein with tetricopeptide repeats 313	

- IFIT1, IFIT3 TLR7, IFNG and IL27 that play a vital role in early immune defense against the314	

invading virus in the host cell. There were other proteins, which were linked to this network of 315	

early innate immune proteins viz. DDX58 – an innate immune receptor that act as a cytosolic 316	

sensor for viral nucleic acids stimulating downstream immune signaling molecules for an 317	

effective antiviral response; and CXCL10, also known as IP10 (interferon inducible protein 318	

10) is involved in the regulation of lymphocyte recruitment in many viral infections and inhibits319	

viral replication. DDX58 and CXCL10 were found to be connected with IFNG, IRF1, IRF7, 320	

and ISG20 - immune network. The network analysis of downregulated genes showed average 321	

node degree 1.77 and the clustering co-efficient to be 0.764. 322	

3.6. Validation of microarray data by qRT-PCR 323	

 Microarray analysis of the viral infected cells in comparison to the control cells yielded large 324	

number of differentially expressed genes. It is important to identify candidate genes, which 325	
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play an important role in our experimental study and validate them by qRT-PCR. We validated 326	

nine candidate differentially expressed genes predicted to be antiviral and are important 327	

innate immune molecules against PPRV in PBMCs at the early stage of infection (6 h p.i). 328	

These DEGs expression in qRT-PCR was in concordance with microarray results except IFN-329	

ϒ (Figure 6). 330	

3.7. Immune signaling pathway of Sungri/96 vaccine virus updated 331	

The pathway predicted at 6 h post infection was also found to be IFN independent similar to 332	

our previously mentioned pathway (Manjunath et al., 2017). Based on the transcriptome 333	

analysis at 6 h p.i. and qRT-PCR validation of important candidate genes, we updated our 334	

previously mentioned pathway with unique innate immune molecules that were predicted at 335	

this earliest time point of infection (supplementary table 3). 336	

4. Discussion:337	

Global gene expression profiling helps to identify candidate genes involved in host-virus 338	

interactions and host immune defense molecules activated or inhibited under viral infection. 339	

In our previous study, we reported the transcriptional profile and immune response 340	

mechanism(s) at 120 h p.i, and 48 h vs 120h response in PBMCs infected with Sungri/96 341	

vaccine strain (Manjunath et al., 2015; Manjunath et al., 2017). The immune protection 342	

mechanisms induced by Sungri/96 vaccine virus at an earliest time point (6 h p.i.) vis -a vis 343	

the transcriptional signatures have not been explained. Therefore, in the present study the 344	

transcriptional response of goat PBMCs at 6 h p.i., which is the time required to complete one 345	

complete life cycle of PPRV (Naveen Kumar et al., 2013) has been explored. 346	

           At 6 h p.i., 1926 significant differentially expressed genes (FC > 3) that were mostly 347	

associated with the immune and defense responses were identified. Innate immunity acts as 348	

a first line of defense against invading pathogens and is activated when pathogen associated 349	

molecular patterns (PAMPs) are engaged to pattern recognition receptors (PRRs) like TLRs 350	
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(Thompson et al., 2011). Toll like receptors (TLRs) - TLR7, TLR3, TLR8 and TLR2 were 351	

significantly upregulated in this study. TLR 7 was the most highly upregulated PRR in our 352	

study along with TLR 8, both of which are involved in the recognition of single stranded (ss) 353	

RNA viruses (Jansen and Thomson, 2012; Lund et al., 2004). These upregulated TLRs -3,7 354	

and 8, were identified to further initiate downstream immune signaling cascades induced by 355	

Sungri/96 vaccine virus. Similarly, previous studies with Hepatitis C Virus (HCV – ssRNA 356	

virus) and other ssRNA viruses identified these TLRs (TLR7 and TLR8) in initiating the 357	

antiviral response (Zhang et al., 2016; Lund et al., 2004; Deibold et al., 2004). 358	

Although different TLRs are activated when engaged to different PAMPs, they cross 359	

path to transcriptionally activate downstream interferon regulatory factors (like IRF3, IRF7) 360	

and NFKB, which when phosphorylated translocate into the nucleus activating type I 361	

interferons. Interestingly, in our study type I interferons (IFN-α and IFN-β) were not 362	

differentially expressed, although, interferon induced genes were found to be induced. This 363	

supports the recent observation that the paramyxovirus (including PPRV) non-structural 364	

proteins (C and V proteins) play a role in inhibiting type I IFN production (Bernardo et al., 365	

2017; Andrejeva et al., 2004). In the present study, at 6 h p.i. we hypothesized that interferon 366	

induced genes must have been activated in an interferon (IFN) independent manner as 367	

observed at 48 and 120 h p.i. (Manjunath et al., 2017). TREX1, which was highly upregulated 368	

in the study is an exoribonuclease, besides being an exonuclease (Yuan et al., 2015). TREX1 369	

may act as negative regulator of induction of type I interferons in PPRV infected PBMCs. 370	

Similar effect of TREX1 was observed recently in HIV infection (Wheeler et al., 2016). TREX1 371	

could be one of the breaks, having inhibitory effect on type I IFN signaling pathway, allowing 372	

virus to replicate in the initial stages of the infection. Further, functional studies need to be 373	

done to study the effect of TREX1 on PPRV replication. IRFs and interferon induced genes 374	

that were upregulated in this study were IRF7, IRF1, IFIT2, IFIT1, IFIT3, IFITM3, OAS2 and 375	
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OAS1Z. ISG20, an interferon induced gene with exonuclease activity specific against ssRNA 376	

viruses (Espert et al., 2003) was found to be upregulated. ISG 20 was linked to other important 377	

innate immune genes in the interaction network asserting its crucial role in immune defense. 378	

Cells exhibiting increased expression of ISG20 are resistant to RNA virus infection and thus, 379	

play an important role in host antiviral innate immune defense (Espert et al., 2005 and Zhou 380	

et al., 2011). The increased expression of ISG20 highlights its specific activity against PPRV 381	

(ssRNA virus) at the early stages of the infection. Recently, it was shown ISG20 inhibits 382	

replication of influenza A virus by interacting with nucleoprotein (Qu et al., 2016) and inhibits 383	

Hepatitis B virus replication by binding directly to epsilon stem loop structure of viral RNA (Liu 384	

et al., 2017). IRF3 and IRF7 are the main regulators of immune responses to viruses (Lazear 385	

et al., 2013). Upregulation of IRF7 in our study indicated host cell responses to trigger 386	

downstream signaling cascades against the invading virus. IRF7 is known to induce the 387	

interferon stimulated genes (ISGs) by stimulating type I interferons (Pulit-Penaloza et al., 388	

2012). However, IRF7 upregulation, induction of interferon induced genes and inhibition of 389	

type I interferon response in PPRV infected PBMCs highlighted induction of ISGs in an IFN 390	

independent manner at the early time point of infection. This may be due to the high degree 391	

of homology between the ISRE and IRF binding element (IRF-E) consensus sequences, 392	

IRF7/IRF3 may bind directly to induce ISGs (Morin et al., 2002; Schmid et al., 2010; 393	

Manjunath et al., 2017). Thus, the data suggests activation of interferon induced genes in 394	

PPRV infected PBMCs in the absence of type I interferons induction. Similar IFR7 activation 395	

of interferon induced restriction factor BST2 was observed in absence of type 1 interferon 396	

signaling in Parainfluenza virus V5 protein infection (Bego et al., 2012). 397	

Viral infections in host cells induce pro-inflammatory cytokines and chemokines 398	

response (Mogensen and Paludan, 2001). Increased expression of interleukins viz. IL-27, IL-399	

19, IL-6, IL-10 and IL-21 and chemokines - CCL8, CCL3, CCL25 and CCL4 in response to 400	
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PPRV infection was observed in this study. IL-27, an IL-12 family of cytokines was found to 401	

be highly upregulated and may be a host immune factor produced in response to PPRV 402	

infection. Its role as host immune factor has also been identified in Influenza A virus infection 403	

(Liu et al., 2012). IL-27 has both pro and anti-inflammatory properties and is known to play 404	

an important role in bridging innate and adaptive immune response (Villarino et al., 2004). IL-405	

27 also synergizes with other interleukins viz. IL-12 to trigger IFN-γ production of naïve CD4+ 406	

T cells promoting Th1 differentiation (Hunter 2005; Yoshida and Miyazaki, 2008). IFN-γ was 407	

found to be significantly upregulated in the present study. Recently, Sungri/96 vaccine was 408	

shown to induce strong IFN-γ production and higher number of CD4+ T cells specifically 409	

responding to the virus (Hodgson et al., 2018). Thus, in the present study high expression of 410	

IL-27 represents its possible antiviral role in PPRV infection. In addition, STAT proteins viz. 411	

STAT1, STAT2 and STAT3 showed increased expression in this study. Therefore, the 412	

findings from the present and previous studies highlights mechanism of host immune 413	

response induced by Sungri/96 vaccine and emphasize the importance of stimulating type I 414	

interferon response lacking in present vaccine, which may otherwise provide longer duration 415	

of immune protection in hosts. 416	

4.1 Updated pathway after inclusion of early immune signaling molecules that were 417	

uniquely expressed at an early time point in Sungri/96 vaccine virus infected PBMCs 418	

Microarray analysis of PPRV infected PBMCs at 6 h p.i., followed by qRT-PCR validation of 419	

key candidate genes helped to include early immune signaling molecules that would aid in 420	

triggering robust antiviral response (Figure 7). This study also confirmed the inhibition of type 421	

I interferons at the earliest time point (6 h p.i.), which corroborated with our previous 422	

observations at 48 h and 120 h p.i. (Manjunath et al., 2017). Lymphotropic PPR virus enters 423	

the PBMCs via SLAM receptor (Adombi et al., 2011) or other alternate receptors expressed 424	

on the surface of PBMCs. PPR virus (negative sense ssRNA) after entering the host cell 425	
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uncoats releasing viral nucleic acid, which is transcribed in the cytoplasm to establish infection 426	

in host cells. The residual ssRNA genome not replicating in cytoplasm are strong inducers of 427	

type I interferon response at initial stages of the infection (Yan et al., 2010). TREX1, an 428	

exoribonuclease degrades ssRNA (Yuan et al., 2015), which could otherwise strongly trigger 429	

type I IFN response in host cells on being recognized by RIG1. TREX1 in our study was 430	

significantly upregulated (FC = 41.9) indicating its role in inhibiting type I IFN response in early 431	

PPRV infection by degrading ssRNA. This TREX1 was observed only at 6 h p.i. and was not 432	

found in our previous transcriptome studies at 48 h and 120 h p.i. (Manjunath et al., 2017). 433	

Alternatively, virus is endocytosed and the viral PAMPs gets engaged to PRRs i.e TLRs 434	

located on the endosomes. TLR7/8 on the endosomal surface recognize ssRNA to initiate 435	

downstream immune signaling cascade. These were upregulated in the present study. TLRs 436	

activates interferon regulatory factors called IRFs via adaptor TRIM21 which was also 437	

upregulated in the present study. Activated TLR7/8 induces the activation of IRF7 during virus 438	

infection. IRF7 normally expressed at low levels is upregulated in response to virus infection 439	

(Liang et al., 2007). IRF7 was significantly upregulated in our study. Activation of TLR7, IRF7 440	

and TRIM21 was also observed at later time points of infection in our previous study 441	

(Manjunath et al., 2017). IRF7 once activated translocates into the nucleus binding directly to 442	

the interferon stimulated responsive elements (ISREs) due to the homology between the two 443	

and thus, activates transcription of interferon induced genes (Ning et al., 2005; Schmid et al., 444	

2010). The interferon induced genes after transcription are translated in the cytoplasm, the 445	

translated interferon induced genes along with other antiviral proteins act synergistically to 446	

exert antiviral response. ISG20 and IFIT1 were the unique interferon induced genes 447	

significantly upregulated at 6 h p.i. along with IL-27, an important antiviral host immune factor. 448	

These molecules along with the innate immune molecules identified in our previous study 449	
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(Manjunath et al., 2017) help in triggering a robust antiviral response in an interferon 450	

independent manner in PBMCs infected with Sungri/96 vaccine virus. 451	

5. Conclusion452	

The study highlighted key early immune sensors and antiviral molecules like IL-27, IFIT1 and 453	

ISG20 at the earliest time point - 6 h p.i. (time taken to complete one PPRV life cycle), in 454	

PBMCs infected with Sungri/96 vaccine virus. The study also confirms the inhibition of type I 455	

interferon response at this time point supporting our observation at 48 h and 120 h p.i. TREX1 456	

is predicted to be the possible molecule responsible for type I interferon inhibition. 457	
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Figure legends: 603	

Figure 1: Overview of the experiment and microarray analysis:  Depicts the experimental 604	

method followed to generate microarray data and further analysis. Steps include identification 605	

of the differentially expressed genes (DEGs), functional enrichment of the DEGs, gene 606	

interaction network analysis, pathway analysis and validation of the candidate DEGs. 607	

Figure 2: PPRV infection confirmation: A. PPRV infection confirmation at 2h p.i. (Lane 2) 608	

and 6 h p.i. in PPRV infected PBMCs showing N gene amplicon of 351 bp (Lane 3) and the 609	

uninfected cells showed no N gene amplification (Lane 1). B. Fold changes for N gene 610	

expression quantified by qRT-PCR after normalization at 6 h p.i in comparison to 2h p.i.. 611	

Figure 3: Gene Ontology (GO) of differentially expressed genes (DEGs): A. GO category 612	

in terms of biological processes for all the DEGs (1926) was retrieved using g:profiler, 613	

significant biological processes (P < 0.05) are shown and the number represents the genes 614	

involved in the particular process. B. Significant biological processes retrieved separately for 615	

the upregulated and the downregulated genes are shown. C and D. Pathways enriched by 616	

clueGO analysis in total DEGs (1926) and the upregulated genes (616) respectively. The 617	

number on the graph represents the number of genes belonging to a particular term. 618	

Figure 4: Ingenuity pathway analysis (IPA): A, B and C. IPA analysis showing top five 619	

canonical pathways enriched in all DEGs (1926), upregulated genes (616) and 620	

downregulated genes (1310) respectively. D. Gene interaction network generated by IPA of 621	

upregulated transcripts at 6 h p.i. The interaction network showed the relationship between 622	
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important innate immune related genes. In the figure, the genes are displayed with various 623	

shapes, which actually represents the IPA defined functional class of gene product as 624	

indicated. The solid line indicates the direct interaction and the dotted line indicates the 625	

indirect interaction. 626	

Figure 5: STRING analysis of protein-protein Interaction networks: A and B. Protein-627	

protein interaction networks of upregulated and the downregulated genes respectively. The 628	

nodes represent the proteins and the edges represent the interactions between them. 629	

Figure 6: Validation of microarray results by qRT-PCR of selected genes: Nine candidate 630	

genes from the microarray analysis were validated with quantitative real time PCR (qRT-631	

PCR). Fold changes (2-ΔΔCt) for each gene is represented, calculated with control sample as 632	

the calibrator with standard error bar. Here levels not connected with same letter are 633	

significantly different. 634	

Figure 7: Updated immune signaling pathway in goat PBMCs infected with PPRV: PPR 635	

virus being lymphotropic infects PBMCs through SLAM/CD46 receptor. The virus enters the 636	

cells and gets uncoated, releasing viral nucleic acids in the cytoplasm, which then undergoes 637	

replication. Also, the virus enters into endosomes where the viral nucleic acids are released. 638	

PPRV ssRNA in the cytoplasm undergoes replication to establish infection in the cells, 639	

whereas the excess ssRNA not replicating are chewed by exoribonuclease TREX1, which 640	

could otherwise induce a strong type I IFN response in infected cells through RIG1. TREX1 641	

significantly upregulated in the present study may probably inhibit type I IFN response in 642	

PBMCs. The virus entering the endosomes releases the ssRNA, gets engaged to TLRs (TLR 643	

– 3, 7 & 8) and activates interferon regulatory factors (IRFs- 3,7 & 9) with the help of adaptor(s)644	

- TRIM14/21. Activated and phosphorylated IRFs translocate into the nucleus and bind to645	

interferon stimulated responsive elements (ISREs) activating interferon stimulated genes 646	

(ISGs). ISGs along with other immune molecule exert a strong antiviral response in PPRV 647	
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infected PBMCs. Upregulated and downregulated genes are indicated by up (↑) and down (↓) 648	

arrows respectively in the figure. The unique candidate genes expressed at early time point 649	

are coloured in blue. 650	

Legends to Supplementary Files: 651	

Supplementary file 1: List of differentially expressed genes and their fold change. This 652	

Supplementary file shows list of 1926 differentially expressed genes and their corresponding 653	

fold changes associated with them. 654	

Supplementary file 2:  GO in terms of biological process retrieved from g-profiler for 1926 655	

differentially expressed genes (Sheet 1), upregulated genes (Sheet 2) and downregulated 656	

genes separately (Sheet 3). This Supplementary file Sheet 1, Sheet 2 and Sheet 3 shows the 657	

significantly enriched processes among the biological processes in g-profiler for total 1926 658	

DEGs, upregulated genes and downregulated genes respectively. The genes involved in 659	

each process and their significant p-value has been indicated in this file. The minus log P 660	

values were used to construct the GO Fig.s. 661	

Supplementary file 3: List of 1926 differentially expressed genes identified in this study with 662	

their fold changes. The list also compares the log fold changes of 1926 DEGs presence in 663	

our pervious study i.e 48 h p.i. and 120 h p.i. The file shows the candidate genes identified in 664	

this study and validated, some of which are unique to early stages of PPRV infection. 665	

666	

667	

668	

669	

670	

671	
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 672	

Table 1: Primers Sequences used for qRT-PCR 673	

 674	

675	

676	

677	

Genes Primer Sequence 

IFIT3 Forward: 		AAGGGTGGACACTGGTCAAG 

Reverse: 		AGGGCCAGGAGAACTTTGAT 

ISG20 Forward: TGCATGCACAGACATCCC 

Reverse: CTAACAGTCATCAGAGTGTAGCC 

IFN-ϒ Forward: CAGGAGCTACCGATTTCAGC 

Reverse: AGGCCCACCCTTAGCTACAT 

IFNα Forward: 	CAGCCTGGTCCTTACTCCTG 

Reverse: 	CTGCTCTGACAACCTCCCAG 

IFNβ Forward: 	GTGTCTCTCCACCACAGCTC 

Reverse: 	CGGAGGTAACCTGTTAGGCTC 

TREX1 Forward: GCATCTACTGGAACCAACCC 

Reverse: CAGGAAGGCCAGAAGGC 

IL-27 Forward: CTGCTTCCTCTCCCTGACAC 

Reverse: TTCCTCCTCATTCTCGTGCT 

TLR7 Forward: GCAGCCTGTTCTGGAAAATC 

Reverse: GAAGGGGCTTCTCAAGGAAT 

IRF7 Forward: 	GACACGCCCATCTTTGACTT 

Reverse: 	ACTGTCCAGGGAGGACACAC 
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 678	

  Table 2: List of top 20 upregulated and the downregulated genes in the present study with their 679	

corresponding fold change 680	

 681	

Top 20 Upregulated genes Fold Change Top 20 Downregulated genes Fold Change 

SERTAD1 53.4 EFHD1 -3937.9

TREX1 41.9 MTURN -1405.9

FN1 30.6 SYNE4 -180.6

TNFRSF11B 29.3 KCNK5 -72.9

TSGA10IP 26.4 TMEM39A -56.4

ISG20 23.8 VPS13A -15.6

TNFRSF11B 22.0 ITGAD -15.4

MAP1B 21.5 NUPR1L -13.8

LAG3 19.6 ITGAD -13.0

IL27 19.3 ABCA7 -12.9

IFNW1 18.3 PLD4 -12.0

EMC7 17.7 FAM92A1 -11.9

IFIT1 17.4 PON3 -11.8

IFITM3 16.7 CRABP2 -11.5

ERAP1 15.5 TGFBI -11.2

AKAP11 14.4 IFT122 -11.0

ACADM 14.2 KCNB2 -10.8

DDX58 14.2 RNF6 -10.8

FAM170B 14.1 ZNF280D -10.6

682	

683	

684	

685	
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 686	

  Table 3: Ingenuity Pathway Analysis (IPA) of 1926 DEGs, upregulated and downregulated genes with 687	

top significant canonical pathways and upstream regulators for each category  688	

 689	

IPA analysis of 1926 DEGs with the top canonical pathways and upstream regulators 

Top Cannonical Pathways P-value Ratio Upstream 

Regulators 

P-value

Intereferon (IFN) Signaling 2.82E-08 0.417 TGFB1 4.34E-26 

Role of BRCA1 in DNA damage 

response 

1.65E-06 0.256 TNF 3.70E-22 

Hepatic stellate cell activation 3.28E-06 0.182 B-Estradiol 8.35E-21 

Role JAK family kinases in IL6 

type cytokine signaling 

9.37E-06 0.4 LPS 4.29E-19 

Glucocorticoid receptor 

signaling 

2.36E-05 0.15 

IPA analysis of Upregulated DEGs with the top canonical pathways and upstream regulators 

Top Cannonical Pathways P-value Ratio Upstream 

Regulators 

P-value

Intereferon (IFN) Signaling 3.81E-12 0.361 IFNG 2.19E-35 

Th cell differentiation 4.09E-08 0.183 IFN-alpha 3.09E-33 

Type1 Diabetes Mellitus 

Signaling 

2.24E-07 0.136 IRF7 6.87E-30 

Communication between innate 

and adaptive immune cells 

6.40E-07 0.146 IRF1 9.16E-25 

Role of JAK1, JAK2 and TYK2 

in IFN signalling 

2.11E-06 0.292 

IPA analysis of Downregulated DEGs with the top canonical pathways and upstream regulators 

Top Cannonical Pathways P-value Ratio Upstream 

Regulators 

P-value
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Transcriptional regulatory 

network in embryonic stem cells 

1.07E-05 0.275 TGFB1 1.00E-10 

Role of BRCA1 in DNA damage 

response 

4.73E-04 0.167 B-Estradiol 1.07E-09 

Calcium signaling 1.41E-03 0.118 ESR2 1.26E-06 

cAMP mediated signaling 2.10E-03 0.109 TNF 1.77E-06 

UVC induced MAPK signaling 2.39E-03 0.19 

690	

691	

692	




